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Introduction: 

     The assignment of labels to edges and or 

vertices of a graph is traditionally 

represented by integers is called labeling. 

Frank Harary interpolated Sum Graphs(SG) 

& Integral Sum Graphs(ISG). A graph with 

labeling of its points using distinct positive 

integers with the intention that the sum of 

any two points in a line are adjacent & is 

also a label of the vertex in that graph is 

called a SG. 𝜎(G) means that how many 

isolated points needed to make the graph, a 

SG and that number should be the 

minimum. ISG are also defined in the same 

manner with distinct integers. ξ(G) denotes 

the number of isolated points needed to 

make a graph, an ISG and that number 

should be the minimum. The properties of 

SG & ISG was studied by many authors[1, 

9, 10, 11] In this article, we enquires  on 

various ESG [2,3,4]. We refer  [5, 6] for all 

basic ideas. A (n ×  m) - flower graph 

denoted by fn × m has n(m – 1) points and mn 

lines. We denote a graph obtained by 

attaching paths of lengths, 1, 2, …, n – 2, n 

- 1 respectively on both sides of each vertex 

of Pn   by Pn( P1, 2P2, 2P3, ..., 2Pn). A ladder 

graph is given by the cartesian product of 2 

paths, i.e, P2 ×  Pn & one of which has only 

one edge,  A ladder graph is denoted by Ln. 

Primary Results: 

Result : 3.1. fn× 3 ∪ (n− 1)K1 is an ESG. 

Proof: Let a1, a2, …, an be the vertices of n 

– cycles of fn× 3 & let {bi } be the ith set of  

vertices, 1 ≤ i ≤ n which form 3 cycles 

around the n -cycles in which 3- cycles 

intersects with n – cycles on a single edge. 

Then E(fn× 3 ∪ (n− 1)K1) = {aibi / 1≤ i ≤ n} 

∪{ aiai + 1, aibi + 1, ana1, anb1 / 1≤ i ≤ n – 1}. 
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ABSTRACT 

Chinju Krishna K interpolated the concept of Even Sum Graphs (ESG). A graph with 

labeling of its vertices using distinct non – negative integers in which the sum of any two 

points of the labels which are adjacent is also a label of a point in that graph is said to be 

an ESG. The notion of even sum number for G is γ(G) & is defined as the number of isolated 

points needed to make G, an ESG and that number should be the minimum. 
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Let c1, c2, …, cn -1 be the isolated vertices of 

fn× 3 ∪ (n− 1)K1. Now we defined η :      

V(fn× 3 ∪ (n− 1)K1) → 2Z+  ∪{0} given by  

η(a1) = 0; η(a2) = 2; η(a3) = 4; η(ai) =          

η(ai - 1) +  η(ai - 2), where i = 4, …, n; η(b1) 

= η(an - 1) + η(an); η(b2) = η(b1) + η(an); η(bi) 

= η(ai - 1) + η(bi - 1), where i = 3, 4, …, n; 

η(c1) = η(an) + η(bn); η(ci) = η(bi + 1) +        

η(ai -1) , 2 ≤ i ≤ n – 1. Then we get distinct 

labels and for any edge ab in G, the 

condition for ESG holds. Thus fn× 3 ∪ 

(n− 1)K1is an ESG. 

Illustration: 3.2.  An ESG of f6× 3 ∪ 5K1is 

shown in Figure 3.1. 

 

   

 

 

 

 

        

  

       

 

      Figure: 3.1 

Result: 3.3. Pn( P1, 2P2, 2P3, ..., 2Pn)  ∪ 2K1  

is an ESG. 

Proof: Let ai,j, where 1 ≤ i ≤ n & 1≤  j ≤ 2i 

– 1  be the vertex of  Pn( P1, 2P2, 2P3, ..., 

2Pn) and let b1 and b2 be the isolated 

vertices of G. Then E(Pn( P1, 2P2, 2P3, ..., 

2Pn)  ∪ 2K1  ) = {ai, i ai + 1, i + 1 / 1 ≤ i ≤ n - 

1} ∪{ ai, j ai, j + 1  / 2 ≤ i ≤ n, 1 ≤ j ≤ 2i – 2}. 

Now we defined a function η : V(Pn( P1, 

2P2, 2P3, ..., 2Pn)  ∪ 2K1) → 2 Z+ ∪ 

{0}given as  η(a1, 1) = 0; η(a2, 2) = 4; η(a2, 1) 

= 2; η(ai, 1) = η(ai - 1, j) + (ai - 1, j +1), where 3 

≤ i ≤ 2i – 1,  j = i – 2; η(a3, 2) = η(a3, 1) + 2; 

η(ai ,2) =  η(ai – 2, i - 2) + η(ai – 1, i - 1)  , where 4 

≤ i ≤ n;          η(ai, j) =  η(ai, j - 2)  + η(ai, j- 1), 

η(b1) = η(an, 2n - 2) + η(an, 2n - 1); η(b2) =  η(an, 

n) + η(an - 1, n - 1). Then the labels are distinct 

and for any edge ab, the condition for ESG 

holds. Thus   Pn( P1, 2P2, 2P3, ..., 2Pn) ∪ 

2K1is an ESG. 

Illustration: 3.4. An ESG of P5( P1, 2P2, 

2P3, ..., 2P5) ∪2K1is shown in the Figure 

3.2. 

 

 

 

 

 

 

 

    

      Figure: 3.2 

Result: 3.5 ( Ln   ʘK2) ∪ (n− 2)K1 is an 

ESG. 
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 Proof: Let ai, bi where 1≤ i ≤ n be the points 

of two Pn graphs.  Join ai and bi where 1 ≤ i 

≤ n. Then we obtained Ln   . Join bi with ci 

and di where 1 ≤ i ≤ n and ai with the vertices 

ei and fi where 1 ≤ i ≤ n. Then we get 

Ln   ʘ K2  &  E( (Ln   ʘ K2 ) = {aien, aifn, bici, 

bidi / 1 ≤ i ≤ n}  ∪ { bibi + 1, aiai + 1 /  1≤ i ≤ n 

– 1}. Let g1, g2 , …, cn - 2  be the isolated 

vertices of G. Now let us define η : 

V(( Ln   ʘK2) ∪ (n− 2)K1)→          2Z+  ∪ 

{0} given by η(a2) = 2; η(a1) = 0; η(a3) = 4; 

η(ai) = η(ai - 1) + η(ai - 2), where i = 4, …, n ; 

η(b1) = η(an - 1) + η(an); η(b2) = η(b1) + 2; 

η(bi) = η(bi - 1) + (bi - 2), where               i = 3, 

…, n; η(c1) = η(bn - 1)  + η(bn); η(ci)  = η(bi - 

1) + η(di - 1), i = 2, …, n;                 η(di) = 

η(bi) + η(ci), i = 1, …, n; η(e1) = η(bn) + 

η(dn); η(ei) = η(ai) + η(bi), where i = 2,…n; 

η(fi) = (ei + 1) + η(ai + 1) , where i = 1, 2, …, 

Illustration: 3.6.  An ESG of  ( L5  ʘK2) ∪ 

3K1 is shown in the Figure 3.3. 

 

                 Figure: 3.3 

Conclusion: 

In this article, we constructed some ESG 

using isolated vertices & this article 

provides to obtain similar results on 

various types of ESG. It also helps to 

identify different labeling techniques 

. 
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