
SOME ANNOTATIONS ON ALMOST AND PSEUDO ALMOST 

EQUILATERAL RATIONAL RECTANGLES 
 

1. Introduction: 

Number theory is one of the classical 

branches of mathematics. It has been a 

treasured subject for all mathematicians 

who wish to handle numbers incredibly. 

This theory deals with counting numbers 

and later discusses their analytic properties 

also [8]. Apart from these, there are so 

many valuable things found in Number 

theory. One such thing is Diophantine 

Analysis. This part deals with Diophantine 

equations and their solutions [3]. The 

beauty of this part is finding the solutions 

because there is no common method found 

to solve any Diophantine equation. 

In recent days, one of the attractive 

research ideas is solving the Diophantine 

equation. Even though there is no common 

method to solve them, each equation is 

solved uniquely. It is evident in [7]. The 

specialty of these types of equations is on 

one side the theory (finding solutions) is 

developing and on the other side, the 

researchers are using those solutions to 

solve problems in areas such as 

combinatorics. Likewise, an interesting 

thing is the solutions are used in geometry. 

 

In [3], Dickson provided some evidence 

for geometry is connected with number 

theory. The initial idea behind such work is 

to collect a particular geometrical shape 

with certain conditions imposed on them. 

Later, existing regular shapes are given 

different names under some conditions and 

their properties are studied. [6] is a suitable 

example of this. Like this, we work on 

existing rational rectangles, rectangles with 

rational sides, and rational diagonals.  

 

ABSTRACT 

A rational rectangle is defined as a rectangle with rational sides and rational diagonal. 

Using this here we define new collection of rectangles namely Almost Equilateral Rational 

Rectangle and Pseudo Almost Equilateral Rational Rectangle. Rectangles with sides 

𝑛, 𝑛 ± 1 where 𝑛 is a rational number come under the name Almost Equilateral Rational 

Rectangles. Extending this, we define pseudo almost equilateral rational rectangles as 

rectangles with sides 𝑛 and 𝑛 ± 𝑟 where 𝑛 ∈ ℚ and 𝑟 is a positive integer greater than 

one. In this paper, we aim to collect all such rectangles with rational diagonal and area 

equal to the perimeter. 

 Keywords:  Rational rectangle, almost and pseudo almost equilateral rational rectangle. 

MSC2020 Mathematics Subject Classifications: 11A55, 11B37, 11D09, 11Y65. 

Research and Reflections on Education ISSN 0974-648X(P)      Vol. 20  No. 3A      October 2022        88     

DR. J. KANNAN  

Assistant Professor, Department of 

Mathematics, Ayya Nadar Janaki 

Ammal College (Autonomous, 

affiliated to Madurai Kamaraj 

University, Madurai), Sivakasi, Tamil 

Nadu, India.  

MS. M. MAHALAKSHMI 

Full Time Ph. D. Research Scholar, 

Department of Mathematics, Ayya 

Nadar Janaki Ammal College 

(Autonomous, affiliated to Madurai 

Kamaraj University, Madurai), 

Sivakasi, Tamil Nadu, India.  

Associate Professor, Pope John Paul 

II College of Education, Puducherry, 

TamilNadu, India 

(Author’s Details : Type in this box 

format. Time New Roman 11)   



SOME ANNOTATIONS ON ALMOST AND PSEUDO ALMOST 

EQUILATERAL RATIONAL RECTANGLES 
 

An equilateral rectangle is defined to be 

a rectangle with all sides equal. That is a 

square. Combining this with the rational 

rectangle, we construct two new kinds of 

rectangles, namely Almost Equilateral 

Rational Rectangle and Pseudo Almost 

Equilateral Rational Rectangle. An Almost 

Equilateral Rational Rectangle is defined as 

a rectangle with sides 𝑛 and 𝑛 ± 1 where 

𝑛 is a rational number, whereas a Pseudo 

Almost Equilateral Rational Rectangle is 

one with sides 𝑛 and 𝑛 ± 𝑟 where 𝑛 is 

rational and 𝑟 is a positive integer greater 

than 1. For example, a rectangle with sides 
3

2
 and 

13

2
 is a pseudo almost equilateral 

rational rectangle.   

In this paper, we collect our newly 

defined rectangles with two properties. One 

is a rational diagonal and the other one is 

the area that coincides with the perimeter. 

To do so, we make use of a special kind of 

Diophantine equation, namely the Pell and 

negative Pell equation. The solutions to 

such equations are dealt with in [1,7]. Also, 

the elementary Diophantine equation of 

degree 2 is used in this work.  

Excluding the introduction and 

conclusion, this manuscript contains four 

sections. Section (2) discusses some 

preliminary results. Section (3) collects all 

almost equilateral rational rectangles with 

rational diagonal, whereas section (4) 

collects all pseudo almost equilateral 

rational rectangles with rational diagonal. 

Section (5) concentrates on an almost and 

pseudo almost equilateral rational rectangle 

in which the area coincides with the 

perimeter.  

2. Preliminaries 

In this section, we provide the solutions to 

the negative Pell equation 𝑥2 − 2𝑦2 = −1  

in terms of the solutions of the Pell 

equation 𝑥2 − 2𝑦2 = 1. Also, we provide 

the solutions of 𝑥2 − 2𝑦2 = −𝑟2. 

Lemma 2.1. [7] Let 𝑢 and 𝑣 be integers 

satisfying 𝑢2 − 2𝑣2 = 1 such that 
𝑢−1

2
   and 

𝑢+1

4
 are perfect squares. Then the integers 

𝑥 and 𝑦 satisfy the equation 𝑥2  − 2𝑦2 =

−1 is of the form 𝑥 = √
𝑢−1

2
 and 𝑦 = √

𝑢+1

4
. 

Proof.  It is clear that 𝑢 is odd and 𝑣 is even. 

The relation 𝑢2 − 2𝑣2 = 1 can be written 

as 𝑢2 − 1 = 2𝑣2. The term 𝑢2 − 1 is 

factored as 𝑢2 − 1 = (𝑢 + 1)(𝑢 − 1). 

Thus one can get 2𝑣2 = (𝑢 + 1)(𝑢 − 1). 

Since the gcd (𝑢 − 1, 𝑢 + 1) = 2, one of 

the factors must be of form 2𝑥2 and the 

other is of form 4𝑦2. Suppose 𝑢 + 1 = 2𝑥2 

and 𝑢 − 1 = 4𝑦2. Then it gives the relation 

𝑥2 − 2𝑦2 = 1. But 𝑢 − 1 = 2𝑥2 and 𝑢 +

1 = 4𝑦2 leads to the negative Pell equation 

𝑥2 − 2𝑦2 = −1. 

Lemma 2.2. If 𝑢 and 𝑣 are integers such 

that 𝑢2 − 2𝑣2 = −1, then 𝑥 = 𝑢𝑟 and 𝑦 =

𝑣𝑟 satisfies 𝑥2 − 2𝑦2 = −𝑟2, where 𝑟 is an 

integer. 

Proof.  It is obvious that, 𝑥2 − 2𝑦2 =

𝑢2𝑟2 − 2𝑣2𝑟2 = −𝑟2. 

Remark 1. By lemmas (2.1) and (2.2), it is 

clear that 𝑥 = 𝑟√
𝑢−1

2
  and 𝑦 = 𝑟√

𝑢+1

4
 

satisfies 𝑥2 − 2𝑦2 = −𝑟2. 

3. Almost Equilateral Rational      

Rectangles with Rational Diagonal 

In this section, we aim to collect all 

almost equilateral rational rectangles with 

rational diagonals using the solutions of 

𝑥2 − 2𝑦2 =  ± 1. In each case, we obtain 

the generalized value of 𝑛.   
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Theorem 3.1.  Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 + 1 where 𝑛 ∈ ℚ. If the diagonal 

of 𝑅 is an integer, then 𝑛 =
1

2
[√

𝑥−1

2
−

1] where 𝑥 is an integer such that 𝑥2 −

2𝑦2 = 1 for some 𝑦 ∈ ℤ. 

Proof.  Let us prove the theorem by 

considering two cases. Suppose 𝑛 is an 

integer and ℎ is the diagonal of 𝑅. Then by 

Pythagoras theorem, we have 𝑛2  + (𝑛 +

1)2 = ℎ2. This equation reduces to 𝑘2 −

2ℎ2 = −1 where 𝑘 = 2𝑛 + 1. We have to 

find 𝑛 ∈ ℤ such that ℎ ∈ ℤ. For that 

purpose, the equation 𝑘2 − 2ℎ2 = −1 

needs to be solved over ℤ. From lemma 

(2.1), it is clear that 𝑘 = √
𝑥−1

2
 and ℎ =

√
𝑥+1

4
  for some 𝑥 ∈ ℤ  such that 𝑥2 −

2𝑦2 = 1 where 𝑦 ∈ ℤ. Now we claim that 

𝑛 obtained from this 𝑘 is an integer. It is 

enough to show that 𝑘 is odd. If 𝑘 is even, 

then 𝑘 = 2𝑘1 for some 𝑘1 ∈ ℤ. This gives 

𝑥 = 8𝑘1
2 + 1. But this value of 𝑥 doesn't 

satisfy the basic nature of ℎ. Thus 𝑘 must 

be odd and so 𝑛 is an integer. Also, 𝑛 is of 

the form 𝑛 =
𝑘−1

2
=

1

2
[√

𝑥−1

2
− 1].   

Let us move to the other case that 𝑛 ∈

ℚ\ℤ. If 𝑛 =
𝑟

𝑠
(∈ ℚ\ℤ), then the equation 

from the Pythagoras theorem implies ℎ2 =
2r2 +2rs+s2

𝑠2 . As ℎ is an integer, ℎ2 is also an 

integer. This leads to the fact that 2𝑟(𝑟 +

𝑠) = (𝑡 − 1)𝑠2 for some 𝑡 ∈ ℤ and so 

𝑠2 | 2𝑟(𝑟 + 𝑠). Since gcd (𝑟, 𝑠) = 1, we 

have gcd (𝑟, 𝑠2) = 1. Thus 𝑠2|2(𝑟 + 𝑠). In 

the usual sense, this can be written as 2(𝑟 +

𝑠) =  𝑡1𝑠2 for some 𝑡1 ∈ ℤ. Rewriting this 

as 𝑡1 =
2𝑟

𝑠2
+

2

𝑠
, we see that 𝑡1 ∉ ℤ, a 

contradiction. Thus in this case we have no 

such required 𝑛. This completes the proof.   

Theorem 3.2. Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 − 1 where 𝑛 ∈ ℚ. If the diagonal 

of 𝑅 is an integer, then 𝑛 =
1

2
[√

𝑥−1

2
+

1] where 𝑥 is an integer such that 𝑥2 −

2𝑦2 = 1 for some 𝑦 ∈ ℤ. 

Proof.  The proof is the same as in theorem 

(3.1). 

Theorem 3.3.  Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 + 1 where 𝑛 ∈ ℚ. If the diagonal 

of 𝑅 is a rational number of the form 
𝑝

𝑞
, (𝑝, 𝑞) = 1, then 𝑛 =

𝑎2−𝑏2

𝑏2−𝑎2+2𝑎𝑏
 for some 

𝑎, 𝑏 ∈ ℤ. 

Proof.  Let ℎ be the diagonal of 𝑅. In this 

theorem, we aim to collect  𝑛 ∈ ℚ such 

that ℎ ∈ ℚ\ℤ. If 𝑛 ∈ ℤ, then 𝑛2 + (𝑛 +

1)2 = ℎ2 ∈ ℤ and so ℎ ∈ ℤ. Thus no 

required ℎ  exists when 𝑛 ∈ ℤ. If 𝑛 =
𝑢

𝑣
∈

ℚ, 𝑛2 + (𝑛 + 1)2 = ℎ2 implies 𝑢2  + (𝑢 +

𝑣)2  = (
𝑝𝑣

𝑞
)

2

. Since 𝑢, 𝑣 ∈ ℤ, we must have 

𝑞|𝑣. Take 𝑣 = 𝑘𝑞 for some 𝑘 ∈ ℤ. 

Replacing this in the last expression, we get 

an equation of the form 𝑥2  + 𝑦2 =

𝑧2 where 𝑥 = 𝑢, 𝑦 = 𝑢 + 𝑘𝑞, 𝑧 = 𝑝𝑘. This 

equation has to be solved over ℤ. As this is 

a Pythagorean equation, its general solution 

is 

𝑥 = 𝛼 (𝑎2 − 𝑏2)  

𝑦 =  2 𝛼 𝑎𝑏 

𝑧 = 𝛼(𝑎2  + 𝑏2) 

where 𝛼, 𝑎, 𝑏 ∈  ℤ. That is, the solution is 

                    𝑢 = 𝛼 (𝑎2 − 𝑏2) 

𝑢 + 𝑘𝑞 =  2 𝛼 𝑎𝑏 
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                 𝑝𝑘 = 𝛼(𝑎2  + 𝑏2) 

Considering all these, we obtain 𝑣 =

𝛼 (𝑏2  − 𝑎2  + 2𝑎𝑏) and so 𝑛 =
𝑎2−𝑏2

𝑏2−𝑎2+2𝑎𝑏
. 

Theorem 3.4.  Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 − 1 where 𝑛 ∈ ℚ. If the diagonal 

of 𝑅 is a rational number of the form 
𝑝

𝑞
, (𝑝, 𝑞) = 1, then 𝑛 =

𝑎2−𝑏2

𝑎2−𝑏2−2𝑎𝑏
 for some 

𝑎, 𝑏 ∈ ℤ. 

Proof.  Following the same steps as in 

theorem (3.3), we obtain 

   𝑢 = 𝛼 (𝑎2 − 𝑏2) 

𝑢 − 𝑘𝑞 =  2 𝛼 𝑎𝑏 

                 𝑝𝑘 = 𝛼(𝑎2  + 𝑏2) 

This gives us 𝑣 = 𝛼 (𝑎2 − 𝑏2 − 2𝑎𝑏). 

Hence 𝑛 =
𝑎2−𝑏2

𝑎2−𝑏2−2𝑎𝑏
. 

 

4. Pseudo Almost Equilateral Rational 

Rectangles with Rational Diagonal 

As in section (3), this section collects all 

pseudo almost equilateral rational 

rectangles with rational diagonal. Here also 

general form of 𝑛  is given which is 

obtained from the solutions of the equation 

𝑥2 + 𝑦2 = 𝑧2. 

Theorem 4.1.  Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 + 𝑟 where 𝑛 ∈ ℚ and 𝑟 ∈ ℕ such 

that 𝑟 > 1. If the diagonal of 𝑅 is an integer, 

then 𝑛 =
𝑟

2
[√

𝑥−1

2
− 1] where 𝑥 is an 

integer such that 𝑥2 − 2𝑦2 = 1 for some 

𝑦 ∈ ℤ. 

Proof.  Suppose 𝑛 is an integer and ℎ is the 

diagonal of 𝑅. Then by Pythagoras 

theorem, we obtain the equation 𝑛2  +
(𝑛 + 𝑟)2 = ℎ2. By writing the equation, we 

get 𝑘2  − 2ℎ2 = −𝑟2 where 𝑘 = 2𝑛 + 𝑟. 

Lemma (2.2) shows that 𝑘 = 𝑟√
𝑥−1

2
 where 

𝑥2 − 2𝑦2 = 1 for some 𝑦 ∈ ℤ. Now we 

claim that 𝑘 = 𝑟√
𝑥−1

2
 implies 𝑛 is an 

integer. It is enough to prove that 𝑘 − 𝑟 is 

even. Now, 𝑘 − 𝑟 = 𝑟 (√
𝑥−1

2
− 1). 

Therefore, 𝑘 − 𝑟 is even if √
𝑥−1

2
− 1 is 

even. Theorem (3.1) shows that √
𝑥−1

2
 is odd 

and so √
𝑥−1

2
− 1 is even. Hence 𝑛 ∈ ℤ  and 

𝑛 is of the form 𝑛 =
𝑟

2
[√

𝑥−1

2
− 1]. 

 Suppose 𝑛 =
𝑝

𝑞
∈ ℚ\ℤ. Then by 

Pythagoras theorem, we have ℎ2 =
2𝑝2+𝑞2𝑟2+2𝑝𝑞𝑟

𝑞2 . Since ℎ is an integer, its 

square is also an integer. This gives us 

2𝑝2  + 2𝑝𝑞𝑟 = 𝑞2 (𝑘1 − 𝑟2) for some 

𝑘1 ∈ ℤ. This leads to the fact that 𝑞2 divides 

2𝑝(𝑝 + 𝑞𝑟). As 𝑝 and 𝑞 are relatively 

prime, it is clear that 2(𝑝 + 𝑞𝑟) = 𝑘2𝑞2 for 

some 𝑘2 ∈ ℤ. This gives 𝑘2 =
2𝑝

𝑞2 =
2𝑟

𝑞2 but 

this is not an integer, a contradiction.   

Theorem 4.2.  Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 − 𝑟 where 𝑛 ∈ ℚ and 𝑟 ∈ ℕ such 

that 𝑟 > 1. If the diagonal of 𝑅 is an integer, 

then 𝑛 =
𝑟

2
[√

𝑥−1

2
+ 1] where 𝑥 is an 

integer such that 𝑥2 − 2𝑦2 = 1 for some 

𝑦 ∈ ℤ. 

Proof. The proof is the same as in theorem 

(4.1). 

Theorem 4.3. Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 + 𝑟 where 𝑛 ∈ ℚ, 𝑟 ∈ ℕ\{1}. If 
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the diagonal of 𝑅 is a rational number of the 

form 
𝑝

𝑞
, (𝑝, 𝑞) = 1, then 𝑛 =

𝑟(𝑎2−𝑏2)

𝑏2−𝑎2+2𝑎𝑏
 for 

some 𝑎, 𝑏 ∈ ℤ. 

Proof. Let ℎ be the diagonal of 𝑅. If 𝑛 ∈ ℤ, 

then 𝑛2 + (𝑛 + 𝑟)2 = ℎ2 ∈ ℤ and so ℎ ∈ ℤ. 

Thus no required ℎ exists when 𝑛 ∈ ℤ. If 

𝑛 =
𝑢

𝑣
∈ ℚ, 𝑛2 + (𝑛 + 𝑟)2 = ℎ2 implies 

𝑢2  + (𝑢 + 𝑣𝑟)2  = (
𝑝𝑣

𝑞
)

2

. Since 𝑢, 𝑣 ∈ ℤ, 

we must have 𝑞|𝑣. Take 𝑣 = 𝑘𝑞 for some 

𝑘 ∈ ℤ. Replacing this in the last expression, 

we get an equation of the form 𝑥2  + 𝑦2 =

𝑧2 where 𝑥 = 𝑢, 𝑦 = 𝑢 + 𝑘𝑞𝑟, 𝑧 = 𝑝𝑘. 

This equation has to be solved over ℤ. The 

solution to this equation is 

                  𝑢 = 𝛼 (𝑎2 − 𝑏2) 

𝑢 + 𝑘𝑞𝑟 =  2 𝛼 𝑎𝑏 

                 𝑝𝑘 = 𝛼(𝑎2  + 𝑏2) 

where 𝛼, 𝑎, 𝑏 ∈  ℤ.  This gives 𝑣 =
𝛼

𝑟
 (𝑏2  − 𝑎2  + 2𝑎𝑏) and so 𝑛 =

𝑟(𝑎2−𝑏2)

𝑏2−𝑎2+2𝑎𝑏
. 

Theorem 4.4. Let 𝑅 be a rectangle with 

sides 𝑛, 𝑛 − 𝑟 where 𝑛 ∈ ℚ, 𝑟 ∈ ℕ\{1}. If 

the diagonal of 𝑅 is a rational number of the 

form 
𝑝

𝑞
, (𝑝, 𝑞) = 1, then 𝑛 =

𝑟(𝑎2−𝑏2)

𝑎2−𝑏2−2𝑎𝑏
 for 

some 𝑎, 𝑏 ∈ ℤ. 

 Proof.  The proof is the same as in the 

theorem (4.3) with 𝑢 = 𝛼(𝑎2 − 𝑏2) and 

𝑢 − 𝑘𝑞𝑟 = 2𝛼𝑎𝑏. 

5. Almost and Pseudo Almost Equilateral 

rational Rectangles with Area Equals 

Perimeter 

In this section, we collect almost and 

pseudo almost equilateral rational 

rectangles with an area equal perimeter. For 

that purpose, we employ the elementary 

quadratic Diophantine equation. 

Theorem 5.1.  One cannot find a rectangle 

𝑅 with sides 𝑛, 𝑛 + 1 where 𝑛 ∈ ℚ such 

that area equals the perimeter. 

Proof.  It is clear that the area of 𝑅 is 𝑛2 +

𝑛 and the perimeter of 𝑅 is 4𝑛 + 2. 

Equating this we obtain the equation 𝑛2 −

3𝑛 − 2 = 0. Solving this quadratic 

equation we obtain two irrational roots. 

That is, we are not able to find a rational 𝑛. 

Theorem 5.2.  One cannot find a rectangle 

𝑅 with sides 𝑛, 𝑛 − 1 where 𝑛 ∈ ℚ such 

that area equals the perimeter. 

Proof.  As in the theorem (5.1), we get the 

equation 𝑛2 − 5𝑛 + 2 = 0. This equation 

also provides us with two irrational roots. 

Theorem 5.3.  The number of rectangles 𝑅 

with sides 𝑛, 𝑛 + 𝑟 where 𝑛 ∈ ℚ, 𝑟 ∈ ℕ\

{1} such that area equals the perimeter is 

exactly one. 

Proof.  Here the area of 𝑅 is 𝑛2 + 𝑛𝑟 and 

perimeter is 4𝑛 + 2𝑟. Equating this we get 

the equation 𝑛2 + (𝑟 − 4)𝑛 − 2𝑟 = 0. The 

roots of this equation are 𝑛 =
4−𝑟±√𝑟2+16

2
, 

which is rational if 𝑟2 + 16 = 𝑠2 for some 

𝑠 ∈ ℤ. Rewriting this we get (𝑠 + 𝑟)(𝑠 −

𝑟) = 16. By writing 16 as a product of two 

numbers and comparing it with the other 

side, we see that the only suitable value of 

𝑟 is 𝑟 = 3. This leads to the values 𝑛 =

3, −2. As 𝑛 cannot be negative, we 

conclude that 𝑛 = 3. 

Theorem 5.4.  The number of rectangles 

𝑅 with sides 𝑛, 𝑛 − 𝑟 where 𝑛 ∈ ℚ, 𝑟 ∈

ℕ\{1} such that area equals the perimeter is 

exactly one.   

Proof. As in the theorem (5.3), here we get 

𝑛 =
4+𝑟±√𝑟2+16

2
 and for a rational 𝑛, we 

must have only 𝑟 = 3. This gives 𝑛 = 6. 
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Remark 2. From theorems (5.3) and (5.4), 

one can notice that there is exactly one 

pseudo almost equilateral rational rectangle 

exists in a way that its area coincides with 

the perimeter. Its sides are 6,3.   

6. Conclusion 

In this paper, all almost and pseudo almost 

equilateral rational rectangles having 

rational diagonal and area same as 

perimeter are collected with the help of 

Diophantine equations and their solutions. 

Taking this as an initial idea, one may think 

of another relation on rectangles and study 

their properties.   
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