A COMPARISON WITH GREEN'S RELATION AND OUR MORE

SPECIAL RELATIONS

ABSTRACT

David Mclean[2] has managed to decomposition of a band into additional specialty ensembles. He created a band by semilattice union of rectangular bands. We have made an effort to create a Near idempotent semigroup as a union of more specific Near idempotent semigroups in response to this conclusion. For this reason, we changed the Mclean relations L and R into λ and ρ before moving on to define δ as C, which is also the same as $\rho \circ \lambda$, as inspired by Green's D[3].

Keywords: decomposition of a band, semilattice, rectangular band, left/right singular near idempotent semigroup.

Introduction:

Our introduction of relations λ , ρ on a near idempotent semigroup is inspired by McLean's relations L and R defined on a band respectively. This exercise's goal is to break down a generic Near idempotent semigroup decomposition, more specialised one. Each δ -class is a near idempotent semigroup into rectangular near idempotent semigroup, and each $\lambda(\rho)$ -class is a left/right singular near idempotent semigroup. Finally, we demonstrate that the relations λ , ρ , δ and ξ are nothing more than the extensions of the relations of green $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{H} ..

Preliminaries and Notations

Definition -Idempotent

If $ee = e (e^2 = e)$, then element e of a semigroup S is referred to be an idempotent element of S.

Zero elements and one-sided identities are idempotent.

The opposite is typically untrue.

Definition

let S be a semigroup and 'a' an element of S. 'a' is said to be a **near – idempotent element** of S if $xa^2y = xay$ for all x, y in S.

A semigroup S is called a **near idempotent semigroup** if every element of S is near idempotent element of S.

In any semigroup S, the left (right, two – sided) identity elements and the left (right, two – sided) zero elements are idempotents.

Definition - Band

If every element of a semigroup S is idempotent we shall say that S itself is idempotent, or that S is a **band**. (Klein – Barmen 1940)

T N KAVITHA

Assistant Professor of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram, TamilNadu, tnkmaths@gmail.com

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 94

A COMPARISON WITH GREEN'S RELATION AND OUR MORE

SPECIAL RELATIONS

Definition - Semi – lattice

A commutative band is called a **semi** – **lattice.**

Definition - rectangular band

Let a and b be any two non – empty sets.

Then, the system $S = (A \times B, *)$ where (

a,b) * (a', b') = (a, b')

For all a, a' in A and b, b' in B is a band.

It is called a rectangular band or an anti-

commutative band.

Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{H} .

Let S^1 for each semigroup S be a semigroup generated from S by adjoining an identity if S does not already contain an identity, and let S^1 Equal S otherwise. The equivalence relations on the set S that Green first developed are known as the "Green's relations of S."

According to such definitions, the L -relation as follows.

For any $a, b \in S$, a L b if and only if $S^1 a = S^1 b$, or equivalently, a L b if and only if a = xb and b = ya for some $x, y \in S^1$.

Dually, the R - relation defined as follows.

a R b if and only if $aS^1 = bS^1$, or equivalently, *a R b* if and only if a = bx and b = ay for some $x, y \in S^1$.

Moreover, the J - relation defined as follows.

a J b if and only if $S^1 a S^1 = S^1 b S^1$,

or equivalently, a J b if and only if a = xby and b = uav for some $x, y, u, v \in S^1$.

Finally, we define $H = L \cap R$ and $D = L_{\circ} R$, where $_{\circ}$ is the composition of relations. Since the relations *L* and *R* commute, it follows that $L_{\circ} R = R_{\circ} L$.

Special relations similar to Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{H} .

We first define the dual relations λ and ρ on a near idempotent semigroup in the following.

Definition

Let S be a near- idempotent semigroup and a and b, elements of S. We define the relations λ and ρ on S as follows:

a λ b if and only if xaby = xay and xbay = xby for all x, y \in S a ρ b if and only if xaby = xby and xbay = xay for all x, y \in S.

Both λ and ρ turn out to be equivalence relations on S. It is easy to check that λ is a right congruence and ρ is a left congruence relation on S.

Lemma

Let S be a near idempotent semigroup. Then the relation λ is an equivalence relation on S.

Proof $xa^2y = xay$ for all $x, y, a \in S$, by the definition of near- idempotent semigroup, so that a λ a for all a in S.

Hence λ is reflexive. Let a λ b.

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 95

A COMPARISON WITH GREEN'S RELATION AND OUR MORE SPECIAL RELATIONS

Then xaby = xayand xbay = xbyfor all $x, y \in S$ which also implies $b \lambda a$. $(bc)^2$ Hence λ is symmetric. (by Let a λ b and b λ c = Then for all $x, y \in S$, and we have, xaby = xay, xbay = xby and $(ac)^2$ xbcy = xby, xcby = xcyy Hence xacy = x a cy = x ab cy = x a(by the bc y = x ab y = xay for all $x, y \in S$ = Similarly, = x bc yxcay = x cb a y = x c ba y = x c b y =xcy for all $x, y \in S$, Which implies a λ c. Hence λ is on S. transitive. Thus λ is an equivalence relation on S. Dually, We can prove that ρ is an equivalence relation on the near -Lemma: idempotent semigroup S. We now prove that λ is a right congruence and ρ is a left congruence relation on S. **Proof**: The following theorem shows that λ is a right congruence relation on S. Lemma Let S be a near – idempotent semigroup. Let a λ b. Then ac λ bc for all $c \in S$ Proof Let a λ b where a, b \in S. We claim that for any $c \in S$, ac λ bc. a λ b \Rightarrow xaby = xay and xbay = xby for all $x, y \in S$

Then for all $x, y \in S$, we have xac bcy = xa cbc y = xab cbc y = x ay = xabcy the definition of S) xab с У = xacy x bc ac y = x b cac y = x ba cac y = xb= х b ac y definition of S) Х ba с у Leading to ac λ bc for all $c \in S$, Hence λ is a right congruence on S. Dually, ρ is a left congruence relation We now consider the composition of the two relations λ and ρ and prove that . $\lambda \circ \rho = \rho \circ \lambda.$ If S is a near-idempotent semi group, then $\lambda \circ \rho = \rho \circ \lambda$ in S. We first prove that $\lambda \circ \rho \subset \rho \circ \lambda$. Let a $\lambda \circ \rho$ b. Then there exists $c \in S$ such that a λ c and $c \rho b$. a λ c \Rightarrow xacy = xay and xcay = xcy for all $x, y \in S.c \rho b \Rightarrow xcby = xby$ and xbcy = xcy for all $x, y \in S$. Choose d = acb. Then for all x, y in S,

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 96

A COMPARISON WITH GREEN'S RELATION AND OUR MORE SPECIAL RELATIONS

 $xady = x a acb y = x a^2 cb y = x a cb y$ $= x \operatorname{acb} y = x dy$ xday = x acb ay = x ac bay= x a b a y= xab a y = xab ac y = xacy (since ρ is a left congruence ab ρ ac) But xacy = xay, so that finally we get xday = xayTherefore $a \rho d$ Similarly, $xdby = xacbby = xacb^2y = xacby =$ xdy for all x, y in S. xbdy = x b acb y = xba cb y = xba b y= x b abv= x cb aby =xcby (since λ is a right congruence ab λ cb) But xcby = xby, so that we get xbdy = xbyHence $d \lambda b$ Thus a ρ d, d λ b so that a $\rho \circ \lambda$ b This gives $\lambda \circ \rho \subset \rho \circ \lambda$ By a similar argument, We can prove that $\rho \circ \lambda \subset \lambda \circ \rho$ Thus we get $\lambda \circ \rho$ $= \rho \circ \lambda$ We now define the relation δ on S as follows **Definition:** u and u ρ b; b λ v and v ρ c

Let S be a near- idempotent semigroup. Let a, b \in S. we define $\delta = \lambda \circ \rho$. In other words, a δ b if and only if there exists $c \in S$ Such that a λ c and c ρ b. We have already proved that $\lambda \circ \rho = \rho$ • λ . Hence we can write a $\lambda \circ \rho$ b or a $\rho \circ \lambda b$ instead of a δb . We now prove that δ is an equivalence relation on the near - idempotent semigroup S. Lemma Let S be a near idempotent semigroup. δ is an equivalence relation on S. **Proof:** For all a in S, $a\lambda a$ and $a\rho$ a since λ and ρ are reflexive, so that a $\lambda \circ \rho$ a, which means a δ a. Hence δ is reflexive. a δ b \Rightarrow a $\lambda \circ \rho$ b There exists $u \in S$ such that a λ u and uρb There exists $u \in S$ such that $b \rho u$ and u λ a since λ and ρ are symmetric \Rightarrow b $\rho \circ \lambda$ a \Rightarrow b δ a (since $\lambda \circ \rho = \rho \circ \lambda = \delta$) Hence δ is symmetric. a δ b. b δ c \Rightarrow There exist u, v \in S such that aλ

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 97

A COMPARISON WITH GREEN'S RELATION AND OUR MORE SPECIAL RELATIONS

Since $u \rho b$ and $b \lambda v$ we have $u \rho \circ \lambda v$ We have $u \lambda \circ \rho v$ since $\lambda \circ \rho = \rho$ $\circ \lambda$ Thus there exists $w \in S$ such that $u \lambda$ w and $w \rho v$ $a \lambda u$ and $u \lambda w$ so that $a \lambda w$; $w \rho v$ and $v \rho c$ so that $w \rho c$ Therefore $a \lambda \circ \rho c$

i.e, a δ c. Thus δ is transitive. Hence δ is an equivalence relation on the near-idempotent semigroup S.

Conclusion

We demonstrate that the relations π and δ coincide on the near-idempotent semigroup S by defining the relation π on S in a manner similar to David McLean's relation P defined on a band[22]. In contrast to Green's, our relationship is more unique.

References

1. Chollawat Pookpienlert ¹, Preeyanuch Honyam ²,* and Jintana Sanwong ², Green's Relations on a Semigroup of Transformations with Restricted Range that Preserves an Equivalence Relation and a Cross-Section, 4 August 2018, Mathematics 2018, 6, 134; doi:10.3390/math6080134

www.mdpi.com/journal/mathematics.

2. David Mc Lean, D.,Idempotent Semigroups, Am. Math. Mon. 61 (1954). 110-113 3. Green J.A., On the structure of semigroups, Ann. of Math. 54 (1951), no. 1, 163–172.

4. Howie, J.M. Fundamentals of Semigroup Theory; Oxford University Press: New York, NY, USA, 1995

5. Sanwong, J.; Sommanee, W. Regularity and Green's relations on a semigroup of transformations with restricted range. Int. J. Math. Math. Sci. 2008.

Sanwong, J.; Singha, B.; Sullivan, R.P. Maximal and minimal congruences on some semigroups. Acta Math. Sin. Engl. Ser. 2009, 25, 455–466.