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 Introduction  : 

   Integers are the main focus of Number 

Theory, an ancient discipline of mathematics. 

In honour of Diophantus of Alexandria, who 

made significant contributions to Number 

Theory by resolving algebraic equations, a 

significant component of Number Theory is 

named "Diophantine equations". Equations 

with more than one variable and roots that 

must be integers are known as diophantine  

equations. A few examples of Diophantine 

equation are Pythagorean, Pellian and 

Fermat's equations [1,2,3]. A crucial 

component of research is the solution of 

Diophantine equations, although there is no 

universal method for doing so. The quadratic 

Diophantine equation 11(𝜃2 + Ω2) =

2(12𝜃Ω − 1)  is taken into consideration in 

this work, and a few theorems are used to 

discover the answers. Additionally, the 

relations between the solutions' recurrence 

are also adjoined. 
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ABSTRACT 

The Quadratic Diophantine equation 11(𝜃2 + 𝛺2) = 2(12𝜃𝛺 − 1) interpreting a conic is reviewed for its 

relevant integer lattice points. The recurrence relations amidst the solutions are also deduced. 
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Figure 1: Graphical Representation of the 

Equation 

 

 
 

     

Theorem 1 : 

Let �̃� be the  Diophantine equation in (3) . 

Then  

(a) The square root of the coefficient 23 

taken from (3) can be expanded as a 

continued fraction   [4; 1,3,1,8̅̅ ̅̅ ̅̅ ̅̅ ̅] 

 (b)    The primary solution of   

           𝜎∗2 − 23𝜁∗2 = 1 is (𝜎1
∗, 𝜁1

∗) = (24 ,5). 

 (c)     Define the string {(𝜎𝑛
∗, 𝜁𝑛

∗)} , where 

            (𝜎𝑛
∗

𝜁𝑛
∗ ) = (

24 115
5 24

)
𝑛

(1
0
) for 𝑛 ≥ 1.      

Then (𝜎𝑛
∗, 𝜁𝑛

∗)  is a solution of �̃�.  

 (d)  The points (𝜎𝑛
∗, 𝜁𝑛

∗) caters to the   

             relations 𝜎𝑛
∗ = 24𝜎𝑛−1

∗ + 115𝜁𝑛−1
∗    

             and 𝜁𝑛
∗ = 5𝜎𝑛−1

∗ + 24𝜁𝑛−1
∗     

              for 𝑛 ≥ 2. 

 (𝑒)  The points (𝜎𝑛
∗, 𝜁𝑛

∗) satisfy the   

             recurrence relations 

             𝜎𝑛
∗ = 48𝜎𝑛−1

∗ − 𝜎𝑛−2
∗   ;  

       𝜁𝑛
∗ = 48𝜁𝑛−1

∗ − 𝜁𝑛−2
∗  for  𝑛 ≥ 4. 

      Proof: 

(a) The continued fraction expansion of 

√23 = 4 + (√23 − 4) 
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 ∴  The continued fraction expansion of √23  

is [4; 1,3,1,8̅̅ ̅̅ ̅̅ ̅̅ ̅ ]. 

(b)  Since   𝜎1
∗2 − 23𝜁1

∗2  = (24)2 − 23(5)2 

                            = 1 

 is satisfied for the values (𝜎1
∗, 𝜁1

∗) = (24 ,5), 

(b) is proved. 

 

(c)  The approach of Mathematical induction 

is employed here. Consider   

(𝜎𝑛
∗

𝜁𝑛
∗ ) = (

24 115
5 24

)
𝑛

(1
0
)……….(4).  

Let n=1,we get   (𝜎1
∗, 𝜁1

∗) = (24 ,5) which is 

a solution of  �̃�. Assume that the result is ture 

for n-1. ie, for the Diophantine equation  

 �̃�: 𝜎𝑛−1
∗2 − 23𝜁𝑛−1

∗2 = 1 …….(5). 

 ie, (𝜎𝑛−1
∗

𝜁𝑛−1
∗ ) = (

24 115
5 24

)
𝑛−1

(1
0
).   

The general solution(𝜎𝑛
∗, 𝜁𝑛

∗) can be 

expressed as  

(𝜎𝑛
∗

𝜁𝑛
∗ ) = (

24 115
5 24

) (𝜎𝑛−1
∗

𝜁𝑛−1
∗ )……(6).  

To check for its solvability, we have 

 𝜎𝑛
∗2 − 23𝜁𝑛

∗2   = (24𝜎𝑛−1
∗ + 115𝜁𝑛−1

∗ )2 −

23(5𝜎𝑛−1
∗ + 24𝜁𝑛−1

∗  )2 

          = 𝜎𝑛−1
∗2 − 23𝜁𝑛−1

∗2  

          = 1 

Thus the result is valid for n so that 

(𝜎𝑛
∗, 𝜁𝑛

∗)  is a solution of �̃�. Hence (c) is 

proved. 

(d) From (6), we find that  

𝜎𝑛
∗ = 24𝜎𝑛−1

∗ + 115𝜁𝑛−1
∗ ;      

𝜁𝑛
∗ = 5𝜎𝑛−1

∗ + 24𝜁𝑛−1
∗  for   𝑛 ≥ 2   ……..(7) 

(e) We have to prove that 𝜎𝑛
∗ and  𝜁𝑛

∗   satisfy 

the given recurrence relations.  

From (7), assuming (𝜎0
∗, 𝜁0

∗) = (1,0) ,the 

consecutive solutions are found to be 

𝜎1
∗ = 24, 𝜎2

∗ = 1151, 𝜎3
∗ = 55224,               

𝜎4
∗ = 2649601 and 𝜁1

∗ = 5, 𝜁2
∗ = 240, 

 𝜁3
∗ =   11515 , 𝜁4

∗ = 552480 and so on. It 

has been found that all these values satisfy the 

recurrence relations 

 𝜎𝑛
∗ = 48𝜎𝑛−1

∗ − 𝜎𝑛−2 
∗ ; 𝜁𝑛

∗ = 48𝜁𝑛−1
∗ − 𝜁𝑛−2

∗ .   

Theorem 2: 

Identify a progression {(𝜃𝑛  ,Ω𝑛)} of positive 

integers by (𝜃1, Ω1) = (29,19) and 𝜃𝑛 =

29𝜎𝑛−1
∗ + 139𝜁𝑛−1

∗ ;   Ω𝑛 = 19𝜎𝑛−1
∗ +

91𝜁𝑛−1
∗  , where {(𝜎𝑛

∗, 𝜁𝑛
∗)} is a sequence of 

positive solutions of 𝜎∗2 − 23𝜁∗2 = 1. Then 

the solution (𝜃𝑛  ,Ω𝑛) satisfies the following 

results. 

  (a) 𝜃𝑛+1 = 24𝜃𝑛 + 115Ω𝑛  ; 

         Ω𝑛+1 = 5𝜃𝑛 + 24Ω𝑛. 

  (b)  𝜃𝑛 = 48𝜃𝑛−1 − 𝜃𝑛−2 ;  

         Ω𝑛 = 48Ω𝑛−1 − Ω𝑛−2. 

 Proof : 

 ( a) We have perceived that 

𝜃𝑛+1 + Ω𝑛+1√𝑑 = ( 𝜎1
∗ + 𝜁1

∗ √𝑑) (𝜃𝑛 +

Ω𝑛√𝑑) is a solution of the  general Pell 

equation Ω2 = 𝑑𝜃2 + 1. Hence  

𝜃𝑛+1 =  𝜎1
∗𝜃𝑛 +  𝜁1

∗Ω𝑛𝑑 and Ω𝑛+1 = 𝜁1
∗𝜃𝑛 +

 𝜎1
∗Ω𝑛 .  

Thus 𝜃𝑛+1 = 24𝜃𝑛 + 115Ω𝑛  ;   
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Ω𝑛+1 = 5𝜃𝑛 + 24Ω𝑛,  

since  𝜎1
∗ = 24 and 𝜁1

∗ = 5. 

 

   (b)   Applying the equalities, 

 𝜃𝑛 = 29𝜎𝑛−1
∗ + 139𝜁𝑛−1

∗ ;   Ω𝑛 = 19𝜎𝑛−1
∗ +

91𝜁𝑛−1
∗  , we come across, by generation on n, 

that    𝜃𝑛 = 48𝜃𝑛−1 − 𝜃𝑛−2 ;   

Ω𝑛 = 48Ω𝑛−1 − Ω𝑛−2.         

Conclusion 

      Quadratic Diophantine equations 

with two unknown have been studied and 

solved using a variety of techniques. One 

might look for several types of solution 

patterns.      
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