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1. Introduction and Preliminaries: 

Levine [7] created the notion of a 

topological space’s generalised closed set 

(also known as the “g-closed set”). Dunham 

and Levine [4] thought about the g-closed 

sets initially, followed by Dunham [3]. 

They are study of g-closed set that is, If 

cl(L) subset W exists while L  subset W and 

W are open in T, then L subset T is said to 

be “g-closed” in the topological space 

( ),T . let ( ),T  be a topological space and 

L  ⊂ T  is called g-closed  if cl(L)  ⊂ W 

holds whenever L  ⊂ W and W is open in 

T. Every closed set is g-closed, otherwise, 

these sets are coincided in T1/2 space.   In 

terms of g-open sets, Caldas and Jafari [2] 

showed a brand-new sort of convergence. 

They also looked at sequentially g-closed 

sets and sequential g-continuous mappings.  

     Balachandran [1] introduced the 

definition of GO-connected by using g- 

open sets. In this paper we discuss 

sequentially-g-connected space by using 

sequentially-g-closed set. L  is called 

sequentially closed [5] if for each 

sequence ( ) Ltn   which is converges to 

t, then t L . L is sequentially open in T 

if the complement of L  is sequentially 

closed. If  L  cannot be described even as 

union of two nonempty separate 

sequentially open sets of L , then L  is 

referred to as being sequentially 

connected [6]. Let ( ),T  be a topological 

space. L is a subset of T and T L is 

denoted by the complement of the set L. Let 

cl denote the closure operator on ( ),T and 

N be the set of all natural numbers. A 

sequence (tn) inside a space T       g-

converges to a point t  T [2] if whenever 

(tn) eventually exists throughout each g-

open set containing t;t is represented by (tn)

t
g

→ , this point is known as the 

sequence’s g-limit and is represented by 

glim nt . If a sequence in L g-converges 

to a point in L, then A is said to be 

sequentially-g-closed [2]. T [L] denote the  
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set of all sequences in L and cg(T ) denote 

the set of all g- convergent sequences in T 

. Give any two topological spaces for 

( ),T  and (Y,  ).   If  the  sequence  (f(tn))
g

→ f(t)  occurs  whenever  the  sequence 

( ) ttn →   the  map  f   :  (T, τ )  →  (Y, σ)  

is  called  sequentially-g-continuous at t

T [2].  A function is referred to as 

sequentially-g-continuous if it is 

sequentially-g-continuous at each tT. 

Each g-open cover of a space T is said to 

be GO-compact [1] if it contains a finite 

subcover 

Theorem 1.1. Let (T, τ) be a topological 

space and L ⊂ T. If L is sequentially 

closed, then L = [L]seq. 

Definition 1.2. When a g-open set O 

contains a t  O subset L, the subset L 

of a topological space (T, τ ) is referred 

to as a point’s g-neighborhood. 

Definition 1.3. [10] Assuming a 

topological space with the properties (T, 

τ), L ⊂ T , and T [L], which is the collection 

of all sequences in L. The sequential g-

closure of L, represented by   seqgL − , is 

therefore given as   seqgL − = {t ∈ T  | t = 

glim tn and (xn) ∈ T [L] ∩ cg(T )}  

All g convergent sequences in T are 

represented by the set cg(T ). Each g-

convergence sequences seems to be a 

convergence sequences, as shown by the 

theorem 1.4 (a) that follows.  

But converse of Theorem need not be true 

by Example 2.5. 

Theorem 1.4. [10] Let (T, τ ) be a 

topological space. Then the following 

hold. 

(a) Each g-convergence sequences seems 

to be a convergence sequences. 

(b) Convergence is the same as g-

convergence when (T, τ ) seems to 

be a T1/2 space. 

Example 1.5.  Consider the topological 

space (T, τ ) where T  = [0, 2), τ  = {∅, 

(0, 1), T }. Consider the case when (tn) = n
1

for n ∈ N. As a result, (tn) converges to 0. 

In the event that L = (0, 1], T \ L is g-open 

because L is g-closed. In other words, T is 

a g-open subset of {0} ∪ (1, 2). However,  


n
1  {0} ∪ (1, 2) for any n.  Because of this, 

(tn) is not g-convergent to 0.  

Lemma 1.6. [10] Suppose that 
),(),(:  YTf →  is a sequentially g-

continuous function. It follows that 

)(1 Lf −
 is sequentially-g-closed whenever 

L is sequentially-g-closed. 

 

2. Sequentially-g-connectedness 

   The section covers the characterization 

of sequentially-g-connectedness. 

Theorem 2.1. A sequentially-g-closed 

set is any set that has been sequentially- g-
closed. 

Proof. Let L T . Let’s say that L is 

sequentially closed. Then, according to 

Theorem 1.1, L = [L]seq.  A sequence 

in the set L such that (tn) t
g

→  must be 

defined as (tn). According to Theorem 

1.4 (a), t ∈ [L]seq is (tn) → t in L. 

Therefore, t ∈ L As a result, L is 

sequentially-g-closed. 

 

Lemma 2.2. Let (T, τ ) be a topological 

space. In the event where Y is 

sequentially-g-closed in T but also L is 

sequentially-g-closed in Y , therefore L 

is sequentially-g-closed in T.  
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Proof. A sequence g-converging to t in T  

is defined as (tn) ∈ L.  Since Y is 

sequentially-g-closed in T  and L    Y , 

then t     Y .  Thus, (tn) g-converges to t 

in Y  .  Moreover, L is sequentially-g-

closed in Y , therefore t ∈ L. So, at T , L 

is sequentially-g-closed. 

Definition 2.3. If there exist no nonempty 

and disjoint sequentially-g-closed subsets 

O and P such that POL  , and OL , 

PL  are nonempty, then a nonempty 

subset L of a topological space (T, τ) is said 

to be sequentially-g-connected [10] 

Whenever there are no nonempty, disjoint 

sequentially-g-closed subsets of T whose 

union equals T, then T is said to be 

sequentially- g-connected. 

Theorem 2.4. [10] Any sequentially-g-

connected subset of T is sequentially-g-

connected if it has a sequentially-g-

continuous image of it. 

Theorem 2.5. Assume that TL   exists  

in  the  topological  space  (T, τ),  after 

which hold.  

(a) In the event that L is a sequentially-

g-connected subset of L, then L is 

sequentially connected in T. 

(b) If L is a sequentially connected and 

sequentially-g-closed in T, then L 

is sequentially-g-connected in T. 

Proof. (a) Let’s say that L is not 

related to T in a sequential manner. 

There are nonempty sequentially closed 

subsets of T called O, P that satisfy the 

condition L = OP. According to 

Theorem 2.1, O and P are also 

sequentially-g-closed subsets of L. It 

follows that L is not sequentially-g-

connected because O and P are disjoint 

sequentially-g-closed subsets of L, that 

is illogical. 

(b) Assume that L is sequentially 

connected in T and sequentially-g-closed 

in T . When L = OP, there are 

nonempty disjoint sequentially closed 

subsets  O and P of L. O and P are 

sequentially-g-closed subsets of L 

according to Lemma 3.1. By using the 

lemma 2.2, O and P are nonempty 

disjoint sequentially-g-closed subsets of 

T because L is a sequentially-g-closed 

set within T . Therefore, L is 

sequentially-g-connected. This is a 

contradiction. 

The following Example 2.6 shows that 

the condition of sequentially-g-closed 
sets in Theorem 2.5 (b) is very 

important. 

Example  2.6.  Consider the 

topological space (T, τ ) where T  =  

[0, 5), τ =  T),1,0(, . Let  L  =  (0, 1]  

and  B  =  (2, 5)  are  subsets  of  T. 

Since L and B are nonempty disjoint 

sequentially closed subsets of T , Then T 

is a sequentially connected set. Assume 

that (sn) = 
n
1  for n ∈ N. As a result, 

(sn) converges to 0.   Given that L = 

(0, 1] is in this case g-closed,  

T \ L is g-open.    In other words, T   is a 

g-open subset of  0 ∪(1,5).    However, n
1

  )5,1(0   about any n. In light of this, 

(sn) doesn’t really g-converge to 0 and so 

L is not a sequentially-g-closed subset in T. 

Therefore, T is sequentially-g-connected. 

Lemma 2.7. [10] A sequentially-g-
connected subset of T is L. In the case 
where O and P are nonempty disjoint 
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sequentially-g-closed subsets of T and L 
⊆ O ∪ P, then either L ⊆ O or L ⊆ P. 

Lemma 2.8. Let (T, τ) be a topological 
space and LT, and O a sequentially g-
open and sequentially-g-closed subset of 
T. If L is sequentially-g-connected, then 
either L ⊆ O or L ⊆ T \ O. 

Proof.  Even if O = ∅ or O = T were 

assumed, the evidence would still be 

clear.  As a result, using the Lemma 2.7,  

either  L ⊆ O  or L ⊆ T  \ O.  If O ∅ and 

O T , therefore L ⊆ O ∪ (T \ O). 

 

Theorem 2.9.  The topological space (T, 
τ) shall be assumed and L  ⊂ T, and 

seqgLNL − ][ . Assuming that L is 

sequentially-g-connected, N must 
likewise be so. 

Proof.  In the event when L  ⊆ N  ⊆ 

seqgL −][  , so N  ⊆ −seqgL][  N  = 

seqNgL −|][ . On  either  case,  L   is  equal  to  

seqNgL −|][  ⊆ L .   Since  seqNgL −|][
   
is  the  

sequential g-closure  of  L   in  L ,  

seqNgL −|][ = L . Assume,  on  the  other  

hand,  that  N   is not sequentially-g-
connected. As a result, the sequentially 
g-closed subsets O and P   of T   are 
nonempty and disjoint, and N   ⊆ O ∪ P 
, NO, and NP  are nonempty.  
Given that L is sequentially-g-
connected and that L ⊆ O or L ⊆ P , 
respectively. Assuming N subsets O, so 

seqgL −][ ⊆ seqgO −][ , resulting  in  

LOL seqgseqNg = −− ][][ | .   The  fact  that  

O  is  sequentially-g-closed in T means 
that seqgO −][  = O.  Inferring that N = N

O from the fact that   L = seqNgL −|][
 
= 

O L . Similarly, N = N P  if LP. 
The proof is finished by this 
inconsistency. 

Corollary 2.10. Assuming L is a 

sequentially-g-connected subset of T 

and (T, τ ) is a topological space, then 

seqgL −][  too is sequentially-g-connected. 

 Proof. This proof follows from    

Theorem 2.9. 

 

Theorem 2.11. A class of sequentially g-

connected subsets of T, called 

 IjM j :  shall exists. j
Ij
M


 are 

sequentially g-connected if 


j
Ij
M . 

Theorem 2.12. An assortment of 

sequentially-g-connected subsets of the 

set  T  are  referred  to  as   IjA j : . Let 

TL   sequentially g-connected such that 

jAL  is nonempty for each .Ij  

Additionally, ( )j
Ii
AL


  is sequentially-

g-connected.  

Proof. Since , jAL  jj ALM = is 

sequentially-g-connected for each Ij , 

and 


j
Ii
A . Therefore, the union j

Ii
M


  =

( )j
Ii
AL


   is sequentially-g-connected, by 

Theorem 2.11.  

3. The product of sequentially-g-

connected spaces 

In this section, we discuss about a product 

property of sequentially g-connectedness.  

Theorem 3.1. If T  and Y are 

sequentially-g-connected, then T Y is 

sequentially-g-connected. 

Proof.  Fix t T .  If T  is sequentially-

g-connected, then L =   Yt  is 

sequentially-g-connected as the image 
of a sequentially-g-connected set under 

sequentially-g-continuous map 

YTTf x →:  defined by t →  (t, y). 

Similarly, for each y ∈ Y the subset 
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 yTM y =   is sequentially-g-connected 

and yML   has  a  common  point  (t, y).   

Hence yML  is  sequentially-g-connected 

by Theorem 2.11. Since 

( )y
Yy

MLYT =


. Therefore, YT   is 

sequentially-g-connected by Theorem 2.11. 

Theorem 3.2. The countable product space 

of sequentially-g-connected spaces is 

sequentially-g-connected. 

Proof. Let T and Y be sequentially-g-

connected spaces. we take a fixed point 

( ) YTyxc = 000 , .  Let c = (t, y) be any 

point of YT  .  It is enough to show that 

sets (T {y0}), ({x0}Y) are 

sequentially-g-connected in TY.  Next, 

(t, y0)  (T {y0}) ({x0}Y).  Hence 

(T {y0}) ({x0}Y) is sequentially-

g-connected by Theorem 2.11, which 

contains points c0, c. By Theorem 2.12, 

YT    is sequentially-g-connected.      

By induction, a finite product space of 

sequentially-g-connected spaces is 

sequentially-g-connected.  Let  
NjjX


 be a 

countable family of sequentially-g-connected 

spaces and let j
Nj

XT


=  be the countable 

product space. Fix a point a point 

Tj = )( . For each  

n N , put 













= 

nj

jn XC , then 

1+ nn CC . So Cn is a sequentially-g-

connected subspace of T by the finite 

case of the Theorem 3.1 already 

proved. Let 
Nn

nCC


= .  Consequently, 

seqgC −][   is a 

sequentially-g-connected subset of T by 

Corollary 2.10, and C is sequentially-g-

connected by Theorem 2.11. In order to 

prove that T is a sequentially-g- connected 

space, it will suffice to prove that 

seqgC −][  = T . For every ( ) Tj =   and 

Nn ,  let Ttn   be the point defined by 

jjnx =,  for j ≤ n and jjnx =,  for j > 

n, where jnx ,  is the j-th coordinate of nt

. Therefore, ( ) Ttn   g-converges to α, by 

Theorem 3.1. Hence seqgC −][  = T and so 

T is sequentially-g-connected. 

Y is sequentially-g-connected.
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