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Introduction:      

In this study, we focus on 

straightforward, undirected, finite graphs. 

See the book [6] for definitions related to 

graph theory. A 1-1 and on-to function 

defined on the set of edges of a graph to 1, 

2..., |E| is an anti-magic labelling of a graph 

G in which the vertex labels are provided as 

the sum of the edge labels of the edges 

incident to it and are distinct. Graphs are 

referred to as anti-magic graphs if they 

allow anti-magic labelling. Hartsfield and 

Ringel [3], who originally investigated the 

anti-magic labelling of graphs, proposed 

that every tree, with the exception of the  

tree on two vertices, has an anti-magic 

labelling. 

Despite the fact that several studies 

on anti-magic graphs have been published, 

there are still many unanswered questions. 

For example, Liang and Zhu [5] 

demonstrated the anti-magic nature of 3-

regular graphs, and Kaplan et al. [4] 

demonstrated the anti-magic nature of 

particular trees with certain degree 

requirements. Refer to Gallian's dynamic 

survey [2] for a complete and in-depth 

examination of the anti-magic graph 

results. 

1. Main Result 

We demonstrate our major 

finding—that tree with a diameter of four 

are anti-magical—in this section.  
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It has been demonstrated that stars are trees 

of diameter 2, which is anti-magic. The 

anti-magic labelling of stars can be used to 

simply acquire the anti-magic labelling of 

trees with a diameter of 3. This encourages 

us to support our main finding—those trees 

with a diameter of four are anti-magical. 

Theorem 2.1 Trees of diameter 4 are anti-

magic. 

Proof: Let T be a tree with n edges and a 

diameter of 4. T has a distinctive center 

vertex since it has a diameter of 4. (say u). 

Imagine the tree T now as a rooted tree with 

the central vertex, u, serving as the tree's 

root. The rooted tree has three levels, level 

0, level 1, and level 2, because T has a 

diameter of 4. Note that the vertices in level 

2 are of degree 1. Now, arrange the vertices 

in level 1 in such a way that degree of the 

vertices in level 1 are in the increasing order 

and as well no edges cross each other. Since 

trees are planar graphs, such an 

arrangement of vertices are always 

possible. Assume that there are k edges 

connecting the vertices in level 1 and level 

2. Now, label these k edges as k,3,2,1 . 

Note that the remaining n-k edges in the tree 

are connecting the root vertex and the 

vertices in the level 1. These edges can be 

assigned the label from the set 

 nkk ,,2,1 ++  . From our construction, 

it is clear that the edges labels of the edges 

of tree T are from the set 

 nkkk ,,2,1,,,3,2,1  ++  and no edge 

labels get repeated. Hence the assignment 

of edge labels defined a bijective function. 

By our construction, if we move from the 

left to the right in level 2, the vertex-sum of 

vertices in level 2 are k,,3,2,1   being all 

the vertices in level 2 are of degree 1. Since 

the vertices in level 1 are arranged based on 

their degree in the left to right order, vertex-

sum of every vertex in level 1 form a 

monotonically increasing order. 

Additionally, the root vertex's vertex-sum is 

higher than the vertex-sum of the vertex on 

level 1's extreme right. As a result, the 

vertex-sum of the vertices in tree T is 

different. So, for the given tree, we defined 

an anti-magic labelling. Trees with a 

diameter of four are hence anti-magical. 

Hence the evidence. 

2. Illustrative example 

In this section, we provide an 

example to illustrate our fundamental 

finding—all trees with a diameter of four 

are anti-magical. Figure 1 shows an 

arbitrary tree of diameter 4 with 12 edges. 

Figure 2 shows the root tree visualization of 

the tree shown in Figure 1. Figure 3 gives 
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the anti-magic labeling of tree shown in 

Figure 1. 

 

 

 

 

 

 

 

3. Conclusion and future directions 

In this paper, we demonstrate that 

anti-magic labelling admits an arbitrary tree 

of diameter 4. We are attempting to 

demonstrate the anti-magic labelling of any 

arbitrary tree with a diameter of five or 

more in this direction.  

 

 

In this situation, our finding is 

consistent with the hypothesis that all trees 

but the tree with two vertices are anti-

magic. 
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