SKOLEM DIFFERENCE ODD GEOMETRIC MEAN LABELING OF SOME DISCONNECTED GRAPHS

Abstract

In this paper we investigate the Skolem Difference odd Geometric mean labeling behavior of some disconnected graphs.

Keywords:Cycle, Triangular snake, $A\left(T_{r}\right)$, Quadrilateral snake.

1. Introduction:

Finite, simple and undirected graphs are considered here. We pursue [1] for symbols and phrases. The motivation of the works done by [2],[3],[4],[5]. The notion of Skolem Difference odd Geometric Mean labeling of Some Graphs was introduced in [6].

Definition 1.1:

Let $\mathrm{Z}(\mathrm{D}, \mathrm{O})$ be a graph where D and O are the set of all p dots and q lines of a graph.If $\mathrm{f}: \mathrm{D}(\mathrm{Z}) \rightarrow\{1,3,5 \ldots \ldots .2 \mathrm{q}+1\}$ is injective and the induced map $\mathrm{f}^{*}: \mathrm{O}(\mathrm{Z}) \rightarrow\{1,3,5 \ldots . .2 \mathrm{q}-1\}$ defined as
$f^{*}(\mathrm{e}=\mathrm{tv})=\lfloor\sqrt{\mathrm{f}(\mathrm{t}) \mathrm{f}(\mathrm{v})}\rfloor$ or $\lceil\sqrt{\mathrm{f}(\mathrm{t}) \mathrm{f}(\mathrm{v})}\rceil$, is bijective, then the function f is said to be a skolem difference odd geometric mean labeling. A graph known as a "skolem Difference odd geometric mean graph" if it admits skolem Difference odd geometric mean labeling.

Definition1.2:

The Union of two graphs $\mathrm{Z}_{1}=\left(\mathrm{D}_{1}, \mathrm{O}_{1}\right)$ and $\mathrm{Z}_{2}=\left(\mathrm{D}_{2}, \mathrm{O}_{2}\right)$ is a graph $\mathrm{Z}=\mathrm{Z}_{1} \cup \mathrm{Z}_{2}$ with dot set $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2}$ and the line set $\mathrm{O}=\mathrm{O}_{1} \cup \mathrm{O}_{2}$.

Definition1.3:

A cycle is a closed path with all dots except

Definition 1.4:[6]

From a path $\mathrm{t}_{1} \mathrm{t}_{2} \ldots \ldots . \mathrm{t}_{\mathrm{r}}$, a Triangular Snake T_{r} is obtained by attaching t_{j} and t_{j+1} to a new dot v_{j} for $1 \leq j \leq r-1$. That is every lines of the path is replaced by a C_{3} triangle.

Definition1.5:[6]

From a path $\mathrm{t}_{1} \mathrm{t}_{2} \ldots \ldots . \mathrm{t}_{\mathrm{r}}$, an Alternate Triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{r}}\right)$ is obtained by attaching t_{j} and $\mathrm{t}_{\mathrm{j}+1}$ alternatively to a new dot v_{j}. That is every alternate lines of the path is replaced by a C_{3} triangle.

L. VENNILA

Research Scholar, Department of Mathematics, Sri Parasakthi College for Women,Courtallam627802,Manonmaniam Sundaranar

University, Abisekapatti -627012, Tamilnadu, India.

Email id: vennila319@gmail.com DR.P.VIDHYARANI

Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, India. the end and first being different.

[^0]
SKOLEM DIFFERENCE ODD GEOMETRIC MEAN LABELING OF SOME DISCONNECTED GRAPHS

Definition1.6:[4]

From a path $t_{1} t_{2}, \ldots . . . \mathrm{t}_{\mathrm{r}}$, a Quadrilateral Snake Q_{r} is obtained by attaching t_{j} and t_{j+1} to two new dots v_{j} and w_{j}, respectively and then linking v_{j} and w_{j}, that is every lines of the path is replaced by a C_{4} cycle.

2. Main Results

Theorem2.1

$\mathrm{C}_{\mathrm{r}} \cup \mathrm{P}_{\mathrm{m}}$ is the skolem difference odd geometric mean graph.

Proof:
Consider $\mathrm{C}_{\mathrm{r}}=\mathrm{t}_{1}, \mathrm{t}_{2}$ \qquad t_{r} be the dots of a cycle. Consider $\mathrm{P}_{\mathrm{m}}=\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{v}_{3}, \ldots . . \mathrm{v}_{\mathrm{m}}$ be the dots of a path.

Let $Z=\mathrm{C}_{\mathrm{r}} \cup \mathrm{P}_{\mathrm{m}}$.
Define $f: D(Z) \rightarrow\{1,3,5,7,9 \ldots . .2 q+1\}$ by
$f\left(\mathrm{t}_{\mathrm{j}}\right)=\{2 \mathrm{j}-1$
$1 \leq \mathrm{j} \leq \mathrm{r}-1$
$2 \mathrm{j}+1$
$j=r$ \}
$f\left(\mathrm{v}_{1}\right)=2 \mathrm{r}-1$
$1 \leq \mathrm{j} \leq \mathrm{r}-1$
$f\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{r}+2 \mathrm{j}-1$
$2 \leq \mathrm{j} \leq \mathrm{m}$

The lines are labeled as
$f\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=1$
$f\left(\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}+2}\right)=2 \mathrm{j}+1 \quad 1 \leq \mathrm{j} \leq \mathrm{r}-2$
$f\left(\mathrm{t}_{\mathrm{r}-1} \mathrm{t}_{\mathrm{r}}\right)=2 \mathrm{r}-1$
$f\left(\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}\right)=2 \mathrm{r}+2 \mathrm{j}-1 \quad 1 \leq \mathrm{j} \leq \mathrm{m}-1$
The line labels are different.
Example:Skolem difference odd geometric mean labeling of $\mathrm{C}_{5} \cup \mathrm{P}_{6}$.

Consider T_{r} be the Triangular snake graph. The dot set of T_{r} be $t_{1}, t_{2}, \ldots \ldots t_{r}$ and v_{1}, v_{2}, $\mathrm{v}_{3}, \ldots . . \mathrm{V}_{\mathrm{r}-1}$.

Consider $\mathrm{P}_{\mathrm{m}}=\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots . \mathrm{y}_{\mathrm{m}}$ be the dots of a path. Let $Z=T_{r} \cup P_{m}$

Define $f: D(Z) \rightarrow\{1,3,5,7,9 \ldots . .2 q+1\}$ by
$f\left(\mathrm{t}_{\mathrm{j}}\right)=6 \mathrm{j}-5$
$1 \leq \mathrm{j} \leq \mathrm{r}$
$f\left(\mathrm{v}_{\mathrm{j}}\right)=6 \mathrm{j}-3$
$1 \leq \mathrm{j} \leq \mathrm{r}-1$
$f\left(\mathrm{y}_{1}\right)=f\left(\mathrm{t}_{\mathrm{r}}\right)-2$
$f\left(\mathrm{y}_{\mathrm{j}}\right)=f\left(\mathrm{y}_{\mathrm{i}}\right)+2 \mathrm{j} \quad 2 \leq \mathrm{j} \leq \mathrm{m}$

The lines are labeled as
$\begin{array}{ll}f\left(\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}+1}\right)=6 \mathrm{j}-3 & 1 \leq \mathrm{j} \leq \mathrm{r}-1 \\ f\left(\mathrm{v}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}\right)=6 \mathrm{j}-5 & 1 \leq \mathrm{j} \leq \mathrm{r}-1 \\ f\left(\mathrm{v}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}+1}\right)=6 \mathrm{j}-1 & 1 \leq \mathrm{j} \leq \mathrm{r}-1 \\ f\left(\mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}+1}\right)=f\left(\mathrm{t}_{\mathrm{r}}\right)+2 \mathrm{j}-2 & 1 \leq \mathrm{j} \leq \mathrm{m}-1\end{array}$
The line labels are different.
Example:Skolem difference odd geometric mean labeling of $\mathrm{T}_{5} \cup \mathrm{P}_{6}$

Theorem2.3:

A $\left(\mathrm{T}_{\mathrm{r}}\right) \cup \mathrm{P}_{\mathrm{m}}$ is the skolem difference odd geometric mean graph.

Proof:
Consider $\mathrm{A}\left(\mathrm{T}_{\mathrm{r}}\right)$ be the Alternate Triangular snake graph.
Consider $\mathrm{P}_{\mathrm{m}}=\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots . . \mathrm{y}_{\mathrm{m}}$ be the dots of a path. Let $Z=\mathrm{A}\left(\mathrm{T}_{\mathrm{r}}\right) \cup \mathrm{P}_{\mathrm{m}}$

Define $f: D(Z) \rightarrow\{1,3,5,7,9 \ldots . .2 q+1\}$ by $\begin{array}{ll}f\left(\mathrm{t}_{\mathrm{j}}\right)=\{4 \mathrm{j}-3 & \mathrm{j} \text { is odd } \\ & 4 \mathrm{j}-1\end{array} \quad \begin{aligned} & \mathrm{j} \text { is even }\} \\ & f\left(\mathrm{v}_{\mathrm{j}}\right)=8 \mathrm{j}-5 \\ & f\left(\mathrm{y}_{1}\right)=f\left(\mathrm{t}_{\mathrm{r}}\right)-2\end{aligned}$
The lines are labeled as

$$
\begin{array}{ll}
f\left(\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j} 1}\right)=4 \mathrm{j}-1 & 1 \leq \mathrm{j} \leq \mathrm{r}-1 \\
f\left(\mathrm{t}_{2 \mathrm{j}-1} \mathrm{v}_{\mathrm{j}}\right)=8 \mathrm{j}-7 & 1 \leq \mathrm{j} \leq \frac{r}{2} \\
f\left(\mathrm{t}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}\right)=8 \mathrm{j}-3 & 1 \leq \mathrm{j} \leq \frac{r}{2} \\
f\left(\mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}+1}\right)=f\left(\mathrm{y}_{1}\right)+2 \mathrm{j} & 1 \leq \mathrm{j} \leq \mathrm{m}-1
\end{array}
$$

The line labels are different.

Theorem2.4:

$\mathrm{Q}_{\mathrm{r}} \cup \mathrm{P}_{\mathrm{m}}$ is the skolem difference odd geometric mean graph.

Proof:

Consider Q_{r} be the Quadrilateral snake graph. The dot set of Q_{r} be $t_{1}, t_{2}, \ldots . . t_{r}, v_{1}, v_{2}$ $, \mathrm{v}_{3}, \ldots . \mathrm{v}_{\mathrm{r}-1}$, and $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots . \mathrm{w}_{\mathrm{r}-1}$.
Consider $\mathrm{P}_{\mathrm{m}}=\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots . \mathrm{y}_{\mathrm{m}}$ be the dots of a path. Let $Z=\mathrm{Q}_{\mathrm{r}} \cup \mathrm{P}_{\mathrm{m}}$

Define $f: D(Z) \rightarrow\{1,3,5,7,9 \ldots . .2 q+1\}$ by
$f\left(\mathrm{t}_{\mathrm{j}}\right)=8 \mathrm{j}-7$
$1 \leq \mathrm{j} \leq \mathrm{r}$
$f\left(\mathrm{v}_{\mathrm{j}}\right)=8 \mathrm{j}-5$
$1 \leq \mathrm{j} \leq \mathrm{r}-1$
$f\left(\mathrm{w}_{1}\right)=7$
$f\left(\mathrm{w}_{\mathrm{j}+1}\right)=8 \mathrm{j}+5 \quad 1 \leq \mathrm{j} \leq \mathrm{r}-2$
$f\left(\mathrm{y}_{1}\right)=f\left(\mathrm{t}_{\mathrm{r}}\right)-2$
$f\left(\mathrm{y}_{\mathrm{j}}\right)=f\left(\mathrm{t}_{\mathrm{r}}\right)+2 \mathrm{j}-2 \quad 2 \leq \mathrm{j} \leq \mathrm{m}$
The lines are labeled as
$f\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=3$
$f\left(\mathrm{t}_{\mathrm{j}+1} \mathrm{t}_{\mathrm{j}+2}\right)=8 \mathrm{j}+5 \quad 1 \leq \mathrm{j} \leq \mathrm{r}-2$
$f\left(\mathrm{t}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}\right)=8 \mathrm{j}-7 \quad 1 \leq \mathrm{j} \leq \mathrm{r}-1$
$f\left(\mathrm{v}_{1} \mathrm{w}_{1}\right)=5$
$f\left(\mathrm{v}_{\mathrm{j}+1} \mathrm{w}_{\mathrm{j}+1}\right)=8 \mathrm{j}+3 \quad 1 \leq \mathrm{j} \leq \mathrm{r}-2$
$f\left(\mathrm{t}_{\mathrm{j}+1} \mathrm{w}_{\mathrm{j}}\right)=8 \mathrm{j}-1 \quad 1 \leq \mathrm{j} \leq \mathrm{r}-1$
$f\left(\mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}+1}\right)=f\left(\mathrm{y}_{1}\right)+2 \mathrm{j} \quad 1 \leq \mathrm{j} \leq \mathrm{m}-1$
The line labels are different.

Theorem2.5:

$\mathrm{P}_{\mathrm{r}} \odot \mathrm{K}_{3} \cup \mathrm{P}_{\mathrm{m}}$ is the skolem difference odd geometric mean graph.

Proof:

Consider $\mathrm{P}_{\mathrm{r}} \odot \mathrm{K}_{3}$ be the graph, its dots be t_{j}, v_{j} and $\mathrm{w}_{\mathrm{j}}(1 \leq \mathrm{j} \leq \mathrm{r})$
Consider $\mathrm{P}_{\mathrm{m}}=\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots . . \mathrm{y}_{\mathrm{m}}$ be the dots of a path. Let $Z=\mathrm{P}_{\mathrm{r}} \odot \mathrm{K}_{3} \cup \mathrm{P}_{\mathrm{m}}$
Define $f: D(Z) \rightarrow\{1,3,5,7,9 \ldots . .2 q+1\}$ by

$f\left(\mathrm{t}_{\mathrm{j}}\right)=\{8 \mathrm{j}-1$		j is odd	
	$8 \mathrm{j}-7$		j is even $\}$
$f\left(\mathrm{v}_{\mathrm{j}}\right)=$	$\{8 \mathrm{j}-7$,		j is odd
	$8 \mathrm{j}-5$		j is even $\}$

SKOLEM DIFFERENCE ODD GEOMETRIC MEAN LABELING OF

 SOME DISCONNECTED GRAPHS$$
\begin{array}{rl}
f\left(\mathrm{w}_{\mathrm{j}}\right)=\{8 \mathrm{j}-5 & \mathrm{j} \text { is odd } \\
8 \mathrm{j}-1 & \mathrm{j} \text { is even }\} \\
f\left(\mathrm{y}_{1}\right)=\left\{f\left(\mathrm{t}_{\mathrm{r}}\right)-2\right. & \mathrm{r} \text { is odd } \\
f\left(\mathrm{t}_{\mathrm{r}}\right)+4 & \mathrm{r} \text { is even }\} \\
f\left(\mathrm{y}_{\mathrm{j}}\right)=f\left(\mathrm{y}_{1}\right)+2 \mathrm{j} & 2 \leq \mathrm{j} \leq \mathrm{m}
\end{array}
$$

The lines are labeled as

$$
f\left(\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}+1}\right)=8 \mathrm{j}-1, \quad 1 \leq \mathrm{j} \leq \mathrm{r}-1
$$

$$
f\left(\mathrm{t}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}\right)=\{8 \mathrm{j}-5 \quad \mathrm{j} \text { is odd }
$$

$$
8 \mathrm{j}-7 \quad \mathrm{j} \text { is even }\}
$$

$$
f\left(\mathrm{t}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}\right)=\{8 \mathrm{j}-3 \quad \mathrm{j} \text { is odd }
$$

$$
8 \mathrm{j}-5 \quad \mathrm{j} \text { is even }\}
$$

$$
f\left(\mathrm{v}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}\right)=\{8 \mathrm{j}-7 \quad \mathrm{j} \text { is odd }
$$

$$
8 \mathrm{j}-3 \quad \mathrm{j} \text { is even }\}
$$

$f\left(\mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}+1}\right)=f\left(\mathrm{y}_{1}\right)+2 \mathrm{j} \quad 1 \leq \mathrm{j} \leq \mathrm{m}-1$
The line labels are different.

References

1. F.Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
2. S.Somasundaram, R.Ponraj and P.Vidhyarani,Geometric Mean Labeling of graphs, Bulletin of pure and Applied Sciences, vol.30E, no.2, (2011), pp. 153-160.
3. S.P.Viji, S.Somasundaram, S.Sandhya, Geometric Mean labeling of some more Disconnected Graphs, International journal of Mathematics Trends and Technology-volume 23 number1- july 2015.
4. R.Vasuki, J.Venkateswari and G.Pooranam, Skolem Difference Odd Mean Labeling of Some Simple Graphs. International journal of Mathematics, Combi, vol. 3(2015), 88-98.
5. V.Annamma and Jawahar Nisha M.I, Geometric Mean Cordial Labeling of certain Graphs. International Journal of Mathematics and Computer Science, 15(2020),no 4,11551159.
6. L.Vennila and P.Vidhyarani, Skolem Difference Odd Geometric Mean Labeling of Some Graphs, Presented in International Conference and Communicated in journal.

[^0]: Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022143

