ABSTRACT

In this paper we investigate the Skolem Difference odd Geometric mean labeling behavior of some disconnected graphs.

Keywords: Cycle, Triangular snake, $A(T_r)$, Quadrilateral snake.

1. Introduction:

Finite, simple and undirected graphs are considered here. We pursue [1] for symbols and phrases. The motivation of the works done by [2],[3],[4],[5]. The notion of Skolem Difference odd Geometric Mean labeling of Some Graphs was introduced in [6].

Definition 1.1:

Let Z (D,O) be a graph where D and O are the set of all p dots and q lines of a graph.If $f:D(Z) \rightarrow \{1,3,5,\dots,2q+1\}$ is injective and the induced map $f^*: O(Z) \rightarrow \{1,3,5,\dots,2q-1\}$ defined as

 $f^*(e=tv) = \lfloor \sqrt{f(t)f(v)} \rfloor$ or $\lfloor \sqrt{f(t)f(v)} \rfloor$, is bijective, then the function f is said to be a skolem difference odd geometric mean labeling. A graph known as a "skolem Difference odd geometric mean graph" if it

admits skolem Difference odd geometric mean labeling.

Definition1.2:

The Union of two graphs $Z_1=(D_1,O_1)$ and $Z_2=(D_2,O_2)$ is a graph $Z=Z_1\cup Z_2$ with dot set $D=D_1\cup D_2$ and the line set $O=O_1\cup O_2$.

Definition1.3:

A cycle is a closed path with all dots except the end and first being different.

Definition 1.4:[6]

From a path $t_1 t_2 \dots t_r$, a Triangular Snake T_r is obtained by attaching t_j and t_{j+1} to a new dot v_j for $1 \le j \le r-1$. That is every lines of the path is replaced by a C₃ triangle.

Definition1.5:[6]

From a path t_1 t_2 t_r , an Alternate Triangular snake $A(T_r)$ is obtained by attaching t_j and t_{j+1} alternatively to a new dot v_j . That is every alternate lines of the path is replaced by a C₃ triangle.

L. VENNILA

Research Scholar, Department of Mathematics, Sri Parasakthi College for Women,Courtallam-627802,Manonmaniam Sundaranar University, Abisekapatti -627012, Tamilnadu, India.

Email id: vennila319@gmail.com DR.P.VIDHYARANI

Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, India.

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 143

Definition1.6:[4]

From a path t_1 t_2 ,...., t_r , a Quadrilateral Snake Q_r is obtained by attaching t_j and t_{j+1} to two new dots v_j and w_j , respectively and then linking v_j and w_j , that is every lines of the path is replaced by a C_4 cycle.

2. Main Results

Theorem2.1

 $C_r \cup P_m$ is the skolem difference odd geometric mean graph.

Proof:

Consider $C_r = t_1, t_2, \dots, t_r$ be the dots of a cycle. Consider $P_m = v_1, v_2, v_3, \dots, v_m$ be the dots of a path.

Let $Z = C_r \cup P_m$.	
Define $f: D(Z) \rightarrow \{1, 3,\}$	$5,7,9$ $2q+1$ } by
$f(t_j) = \{ 2j - 1 \}$	$1 \le j \le r-1$
2j+1	j=r}
$f(\mathbf{v}_1) = 2\mathbf{r} - 1$	$1 \le j \le r-1$
$f(v_j) = 2r + 2j - 1$	$2 \leq j \leq m$
The lines are labeled as	

 $f(t_1 t_2) = 1$

$$\begin{split} f(t_j \ t_{j+2}) &= 2j{+}1 & 1{\leq}\, j{\leq}\, r{-}2 \\ f(t_{r{-}1} \ t_r) &= 2r{-}1 \end{split}$$

 $f\left(v_{j}\;v_{j+1}\right) = 2r + 2j \text{-}1 \qquad 1 \leq j \leq m \text{-}1$

The line labels are different.

Example:Skolem difference odd geometric mean labeling of $C_5 \cup P_6$.

Consider T_r be the *Triangular snake* graph. The dot set of T_r be t_1, t_2, \ldots, t_r and v_1, v_2 , $V_{3,...,V_{r-1}}$. Consider $P_m = y_1, y_2, y_3, \dots, y_m$ be the dots of a path. Let $Z = T_r \cup P_m$ Define $f: D(Z) \to \{1, 3, 5, 7, 9 \dots, 2q+1\}$ by $f(t_i) = 6j - 5$ $1 \leq i \leq r$ $f(v_i) = 6j - 3$ $1 \le j \le r-1$ $f(y_1) = f(t_r) - 2$ $f(y_i) = f(y_1) + 2i$ $2 \leq i \leq m$ The lines are labeled as $f(t_i t_{i+1}) = 6j - 3$ $1 \le j \le r-1$ $f(v_i t_i) = 6j - 5$ $1 \le j \le r-1$

$$\begin{aligned} f(\mathbf{v}_{j} \mathbf{t}_{j+1}) =& 6j-1 & 1 \leq j \leq r-1 \\ f(\mathbf{y}_{j} \mathbf{y}_{j+1}) =& f(\mathbf{t}_{r}) + 2j - 2 & 1 \leq j \leq m-1 \end{aligned}$$

The line labels are different.

Example:Skolem difference odd geometric mean labeling of $T_5 \cup P_6$

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 144

Theorem2.3:

A $(T_r) \cup P_m$ is the skolem difference odd geometric mean graph.

Proof:

Consider $A(T_r)$ be the Alternate Triangular snake graph. Consider $P_m = y_1, y_2, y_3, \dots, y_m$ be the dots of a path. Let $Z = A(T_r) \cup P_m$ Define $f: D(Z) \to \{1, 3, 5, 7, 9 \dots 2q+1\}$ by $f(t_i) = \{4i - 3\}$ j is odd 4j-1 j is even} $f(v_i) = 8i - 5$ $1 \le j \le r$ $f(y_1) = f(t_r) - 2$ $f(y_i) = f(t_r) + 2i-2$ $2 \leq j \leq m$ The lines are labeled as $f(t_j t_{j+1}) = 4j - 1$ $1 \le i \le r-1$ $1 \le j \le \frac{r}{2}$ $f(t_{2j-1} v_j) = 8j -7$ $1 \le j \le \frac{r}{2}$ $f(t_{2j} v_j) = 8j-3$

 $f(y_j y_{j+1}) = f(y_1) + 2j$ $1 \le j \le m-1$

The line labels are different.

Theorem2.4:

 $Q_r \cup P_m$ is the skolem difference odd geometric mean graph.

Proof:

Consider Q_r be the Quadrilateral snake graph. The dot set of Q_r be $t_1, t_2, \ldots, t_r, v_1, v_2$, v_3, \ldots, v_{r-1} , and $w_1, w_2, w_3, \ldots, w_{r-1}$. Consider $P_m = y_1, y_2, y_3, \ldots, y_m$ be the dots of a path. Let $Z = Q_r \cup P_m$

Define $f: D(Z) \to \{1, 3, 5, 7, 9 \dots, 2q+1\}$ by		
$f(t_j) = 8j - 7$	$1 \le j \le r$	
$f(v_j) = 8j - 5$	$1 \le j \le r-1$	
$f(\mathbf{w}_1) = 7$		
$f(w_{j+1}) = 8j + 5$	$1 \le j \le r-2$	
$f(y_1) = f(t_r) - 2$		
$f(y_j) = f(t_r) + 2j-2$	$2 \leq j \leq m$	
The lines are labeled as		
$f(t_1 t_2) = 3$		
$f(t_{j+1} t_{j+2}) = 8j+5$	$1 \le j \le r-2$	
$f(\mathbf{t}_{\mathbf{j}} \mathbf{v}_{\mathbf{j}}) = 8\mathbf{j} - 7$	$1 \le j \le r-1$	
$f(\mathbf{v}_1 \mathbf{w}_1) = 5$		
$f(v_{j+1} w_{j+1}) = 8j+3$	$1 \le j \le r-2$	
$f(\mathbf{t}_{\mathbf{j}+1} \mathbf{w}_{\mathbf{j}}) = 8\mathbf{j}\mathbf{-}1$	$1 \le j \le r-1$	
$f(y_j y_{j+1}) = f(y_1) + 2j$	$1 \le j \le m-1$	

The line labels are different.

Theorem2.5:

 $P_r \odot K_3 \cup P_m$ is the skolem difference odd geometric mean graph.

Proof:

Consider $P_r \Theta K_3$ be the graph, its dots be t_j , v_j and w_j $(1 \le j \le r)$ Consider $P_m = y_1, y_2, y_3, \dots, y_m$ be the dots of a path. Let $Z = P_r \Theta K_3 \cup P_m$ Define $f: D(Z) \rightarrow \{1,3,5,7,9 \dots, 2q+1\}$ by $f(t_j) = \{8j - 1 \qquad j \text{ is odd} \\ 8j - 7 \qquad j \text{ is even}\}$ $f(v_j) = \{8j - 7, \qquad j \text{ is odd} \\ 8j - 5 \qquad j \text{ is even}\}$

Research and Reflections on Education ISSN 0974-648X(P) Vol. 20 No. 3A October 2022 145

$f(\mathbf{w}_j) = \{8j - 5$	j is odd
8j – 1	j is even}
$f(y_1) = \{ f(t_r) - 2 \}$	r is odd
$f(\mathbf{t_r})$ +4	r is even}
$f(y_j) = f(y_1) + 2j$	$2 \le j \le m$
The lines are labeled as	
$f(t_j t_{j+1}) = 8j - 1$,	$1 \le j \le r-1$
$f(t_j v_j) = \{8j - 5$	j is odd
8j – 7	j is even}
$f(t_j w_j) = \{8j - 3$	j is odd
8j – 5	j is even}
$f(v_j w_j) = \{8j - 7$	j is odd
8j - 3	j is even }
$f(y_j y_{j+1}) = f(y_1) + 2j$	$1 \le j \le m-1$
The line labels are different.	

References

1. F.Harary, *Graph Theory*, Narosa Publishing House, New Delhi, 1988.

2. S.Somasundaram, R.Ponraj and P.Vidhyarani, *Geometric Mean Labeling of graphs*, Bulletin of pure and Applied Sciences, vol.30E, no.2, (2011), pp. 153-160.

3. S.P.Viji, S.Somasundaram, S.Sandhya, Geometric Mean labeling of some more Disconnected Graphs, International journal of Mathematics Trends and Technology-volume 23 number1- july 2015.

4. R.Vasuki, J.Venkateswari and G.Pooranam, *Skolem Difference Odd Mean Labeling of Some Simple Graphs*. International journal of Mathematics, Combi, vol. 3(2015), 88-98.

5. V.Annamma and Jawahar Nisha M.I, Geometric Mean Cordial Labeling of certain Graphs. International Journal of Mathematics and Computer Science, 15(2020),no 4,1155-1159.

6. L.Vennila and P.Vidhyarani, Skolem *Difference Odd Geometric Mean Labeling of Some Graphs*, Presented in International Conference and Communicated in journal.