CONNECTED SQUARE FREE DETOUR NUMBER OF A GRAPH

Abstract

In this paper, we introduce and investigate the concepts of connected square free detour set of a graph G and the connected square free detour number $c d n_{\square f}(G)$ of G. Certain general properties of these concepts are studied. It is proved that all the end-vertices and cut-vertices of a connected graph G belong to every connected square free detour set of G. It is also proved that if T is a tree of order $n \geq 2$, then $c d n_{\square f}(T)=n$ and every branch of a connected graph G with cut-vertices contain an element of a connected square free detour basis. The connected square free detour basis of certain classes of graphs are determined. For any three positive integers α, β and n with $2 \leq \alpha<\beta \leq n$, there exists a connected graph G of order n with $d n_{\square f}(G)=\alpha$ and $c d n_{\square f}(G)=\beta$.

Keywords: Connected detour number, connected square free detour set, connected square free detour number

Introduction

In this article, a graph G is considered to be a non-trivial, finite, undirected and connected graph of order n with neither loops nor multiple edges. Let $D(x, y)$ be the longest path in G and an $x-y$ path of $D(x, y)$ is called $x-y$ detour. The parameters on detour concept was developed by Chartrand [1]. The connected detour concept was introduced by A. P. Santhakumaran and S. Athisayanathan [5]. The detour concept was extended to triangle free detour concept by S. Athisayanathan et al. [4].

For any two vertices u, v in a connected graph $G(V, E)$, the triangle free detour distance $D_{\Delta f}(u-v)$ is the length of a longest $u-v$ triangle free path in G. A $u-v$ path of length $D_{\Delta f}(u, v)$ is called a $u-v$ triangle free detour. A set $S \subseteq V$ of G is called a triangle free detour set of G if every vertex of G lies on a $u-v$ triangle free detour joining a pair of vertices of S. The triangle free detour number $d n_{\Delta f}(G)$ of G is the minimum order of its triangle free detour sets. This triangle free detour number was studied by S. Athisayanathan and S. Sethu Ramalingam [6]. This concept was extended to square free detour number by K. Christy Rani and G. Priscilla Pacifica [3]. A set $S \subseteq V$ of G is called a square free
detour set if every vertex of G lies on a $u-$ v square free detour joining a pair of vertices of S.The square free detour number of G denoted by $d n_{\square f}(G)$ is defined as the minimum order of its square free detour sets.

G. PRISCILLA PACIFICA

Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628001. E-mail: priscillamelwyn@gmail.com

K. CHRISTY RANI

Research Scholar, Reg.No.: 20122212092002, Departmant of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti,
Tirunelveli -627 012, Tamil Nadu, India.
E-mail: christy.agnes@gmail.com
G. SETHU RAMALINGAM

Assistant Professor,
Department of Mathematics,
St. Xavier's College (Autonomous),
Palayamkottai - 627002.
E-mail: ssethusxc@gmail.com

In this article, we introduce the connected square free detour number denoted by $c d n_{\square f}(G)$. We determine the connected square free detour number of some standard graphs.

The following theorems are used in the sequel. For the basic terminologies we refer to Chartrand [2].

Theorem 1.1 [3] Every end-vertex of a non-trivial connected graph G belongs to every detour set of G. Also, if the set S of all end-vertices of G is a square free detour set, then S is the unique square free detour basis for G.

Theorem 1.2 [3] Let $G=(V, E)$ be a complete graph $K_{n}(n \geq 2, n \neq 4)$. Then a set $S \subseteq V$ is a square free detour basis of G if and only if S consists of any two adjacent vertices of G.

Theorem 1.3 [3] Let $G=(V, E)$ be an odd cycle C_{n} of order $n \geq 3$. Then a set $S \subseteq V$ is a square free detour basis of G if and only if S consists of any two adjacent vertices of G.

Theorem 1.4 [3] Let $G=(V, E)$ be an even cycle C_{n} of order $n \geq 4$. Then a set $S \subseteq V$ is a square free detour basis of G if and only if S consists of
(i) any two antipodal vertices of $G, n=4$
(ii) any two adjacent vertices or two antipodal vertices of G, when $n \geq 5$.

Theorem 1.5 [3] Let G be a wheel $W_{n}=$ $K_{1}+C_{n-1}(n \geq 4)$. Then a set $S \subseteq V$ is a square free detour basis of G if and only if S consists of
(i) any two adjacent vertices or two antipodal vertices of C_{n-1}, when $4 \leq n \leq$ 9.
(ii) the vertex of K_{1} with any two adjacent vertices of C_{n-1}, when $n \geq 10$ and n is even.
(iii) the vertex of K_{1} with any two antipodal vertices of C_{n-1}, when $n \geq 11$ and n is odd.

2. Connected square free detour

 Number of a graphDefinition 2.1 Let $G=(V, E)$ be a connected graph. A set $S \subseteq V$ is called a connected square free detour set of G if S is the detour set of G and the subgraph $G[S]$ induced by S is connected. The connected square free detour number $c d n_{\square f}(G)$ of G is the minimum order of its connected square free detour sets and any connected square free detour set of order $c d n_{\square f}(G)$ is called a connected square free detour basis of G.

Example 2.2 For the graph G_{1} given in Figure 2.1, the subsets $S_{1}=\left\{v_{1}, v_{6}\right\}, S_{2}=$ $\left\{v_{2}, v_{5}\right\}$ and $S_{3}=\left\{v_{3}, v_{4}\right\}$ are the three square free detour bases of G_{1} so that $d n_{\square f}\left(G_{1}\right)=2$. It is clear that no two element subset of V is a connected square free detour set of G.

Figure 2.1: G_{1} and G_{2}

However, the set $S_{4}=\left\{v_{2}, v_{4}, v_{6}\right\}$ is the connected square free detour basis of G_{1} so that $c d n_{\square f}\left(G_{1}\right)=3$.

Similarly, for the graph G_{2} given in Figure 2.1, the subset $S_{5}=\left\{v_{2}, v_{5}\right\}$ is a square free detour basis but not a connected square free detour set of G_{2}. The sets $S_{6}=\left\{v_{1}, v_{2}, v_{4}\right\}$, $S_{7}=\left\{v_{1}, v_{3}, v_{4}\right\}, \quad S_{8}=\left\{v_{1}, v_{3}, v_{5}\right\}, \quad S_{9}=$ $\left\{v_{2}, v_{3}, v_{4}\right\}$ and $S_{10}=\left\{v_{3}, v_{4}, v_{5}\right\}$ are the connected square free detour bases of G_{2} that yield $c d n_{\square f}\left(G_{2}\right)=3$. Thus, there can be more than one connected square free detour basis for a graph G.

Theorem 2.3 For any connected graph G of order $n \geq 2,2 \leq d n_{\square f}(G) \leq c d n_{\square f}(G) \leq$ n.

Proof. A square free detour set needs at least two vertices so that $d n_{\square f}(G) \geq 2$. Since the connected square free detour set is also a square free detour set, $d n_{\square f}(G) \leq$ $c d n_{\square f}(G)$. Also since G is connected the set of all vertices of G is a connected square free detour set of G, it follows that $d n_{\square f}(G) \leq n . \quad$ Thus $\quad 2 \leq d n_{\square f}(G) \leq$ $c d n_{\square f}(G) \leq n$.

Corollary 2.4 For any connected graph G, if $c d n_{\square f}(G)=2$, then $d n_{f}(G)=2$.

Proof. This follows from Theorem 2.3.
Definition 2.5 A vertex v in a graph G is a connected square free detour vertex if v belongs to every connected square free detour basis of G. If G has a unique connected square free detour basis of S, then every vertex in S is a connected square free detour vertex of G.

Example 2.6 For the graph G_{1} given in Figure 2.1, the subset $S_{4}=\left\{v_{2}, v_{4}, v_{6}\right\}$ is the unique connected square free detour basis of G_{1} so that every vertex of G_{1} is a connected square free detour vertex of G_{1}.

Theorem 2.7 Every end-vertex of a nontrivial connected graph G belongs to every connected square free detour set of G.

Proof. Since every connected square free detour set is also a square free detour set of G the result follows from Theorem 1.1.

Theorem 2.8 Let G be a connected graph with cut-vertices and S a connected square free detour set of G. Then for any cut-vertex y of G, every component of $G-y$ contains an element of S.

Proof: Let y be any cut-vertex of G such that one of the components, say B of $G-y$ contains no element of S. Let $x \in V(B)$. Since S is a connected square free detour set, there exist vertices $u, v \in S$ such that x lies on some $u-v$ square free detour path $P: u=x_{0}, x_{1}, x_{2}, \ldots, x, \ldots, x_{r}=v$ in G. Let P^{\prime} be the $u-x$ subpath of P and $P^{\prime \prime}$ be the $x-v$ subpath of P. Since y is a cut vertex of G, both P^{\prime} and $P^{\prime \prime}$ of P contain y, so that P is not a square free detour, which is a contradiction. Thus every component of $G-y$ contains an element of S.

Corollary 2.9 Let G be a connected graph with cut-vertices and S a connected square free detour set of G. Then every branch of G contains an element of S.

Theorem 2.10 Let G be a connected graph with cut-vertices. Then every cut-vertex of G belongs to every connected square free detour set of G.

Proof. Let G be a connected graph and y be a cut-vertex of G. Let $G_{1}, G_{2}, G_{3}, \ldots, G_{r}(r \geq 2)$ be the components of $G-y$. Let S be a connected square free detour set of G. Then by Theorem 2.8, S contains at least one element from each component $G_{i}(1 \leq i \leq r)$ of $G-y$. Since $G[S]$ is connected, it follows that $y \in$ S.

Corollary 2.11 All the end-vertices and cut-vertices of a connected graph G belong to every connected square free detour set of G.

Proof. This follows from Theorems 2.7 and 2.9.

Corollary 2.12 If G is a connected graph of order n such that every vertex x of G is either an end-vertex or a cut-vertex, then $c d n_{\square f}(G)=n$.

Proof. This follows from Corollary 2.11
Remark 2.13 The converse of the corollary 2.12 is not true. For the graph given in Figure 2.2, $c d n_{\square f}(G)=n$, but the vertex x in G is neither a cut-vertex nor an end-vertex.

Figure 2.2: G
Corollary 2.14 If T is a tree of order n, then $c d n_{\square f}(T)=n$.
Proof. This follows from Corollary 2.11.
Theorem 2.15 Let $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots \cup\right.$ $\left.K_{n_{r}} \cup k K_{1}\right)+v$ be a block graph of order $n \geq 4$, such that $r \geq 1$, each $n_{i} \geq 2$ and $n_{1}+n_{2}+\cdots+n_{r}+k=\mathrm{n}-1$. Then $c d n_{\square f}(G)=r+k+1$.

Proof. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{k}$ be the endvertices of G. Let S be a connected square free detour set of G. Then by Corollary $2.11, y \in S$ and $x_{i} \in S(1 \leq i \leq k)$. Also, by Theorem 2.10, S contains a vertex from each component $K_{n_{i}}(1 \leq i \leq r)$. Now, choose exactly one vertex y_{i} from each $K_{n_{i}}$ such that $y_{i} \in S(1 \leq i \leq r)$. Then $|S| \geq$ $r+k+1$. Let $S^{*}=\left\{y, y_{1}, y_{2}, y_{3}, \ldots\right.$, $\left.y_{r}, x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}$. Since every vertex
of G lies on a detour joining a pair of vertices of S^{*}, it follows that S^{*} is a square free detour basis of G. Also, since $G\left[S^{*}\right]$ is connected, $c d n_{\square f}(G)=r+k+1$.

Remark 2.16 If the blocks of the graph G in Theorem 2.15 are not complete, then the theorem is not true.

Theorem 2.17 Let $G=(V, E)$ be a complete graph $K_{n}(n \geq 2)$ or a cycle $C_{n}(n \geq 3)$. Then a set $S \subseteq V$ is a connected square free detour basis of G if and only if S consists of any two adjacent vertices of G.

Proof. Let $G=K_{n}$ be a complete graph of order $n(n \geq 2)$ or a cycle C_{n} and a set $S \subseteq$ V be a set of two adjacent vertices of G. Then by Theorems 1.2, 1.3 and 1.4, S is a square free detour basis of G. Since any set of two adjacent vertices is connected, it follows that S is a connected square free detour basis of G.

Now, let S be a connected square free detour basis of G. Let S^{\prime} be any set consisting of two adjacent vertices of G. Then as in the first part of this theorem S^{\prime} is a connected square free detour basis of G. Hence $|S|=\left|S^{\prime}\right|=2$ and it follows that S consists of any two adjacent vertices of G.

Theorem 2.18 Let $G=(V, E)$ be a complete bipartite graph $K_{m, n}(2 \leq m \leq n)$ with partitions X and Y where $|X|=$ $m,|Y|=n$. Then a set $S \subseteq V$ is a connected square free detour basis of G if and only if S consists of m vertices of X and exactly one vertex of Y.

Proof. Let $G=K_{m, n}(2 \leq m \leq n)$ be a complete bipartite graph with bipartite sets X and Y. Let $X=\left\{x_{1}, x_{2}, x_{3}, \ldots ., x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots ., y_{n}\right\}$. Let S^{*} be a set of m elements of X. Then by Theorem 2.1.20, every vertex of V lies on any square free
detour $x_{i} y_{j} x_{k}(1 \leq i \leq k \leq m, 1 \leq j \leq$ $n, k \neq i$) of length 2 . Thus S^{*} is a square free detour basis of G. Since the bipartite set X consists of m non-adjacent vertices, the set S^{*} is not connected. It is clear that $S=$ $S^{*} \cup\{y: y \in Y\}$ is a connected square free detour set of G. Thus $|S|=m+1$, consequently S is a connected square free detour basis of G.

Conversely, assume that S is a connected square free detour basis of G. Let S^{\prime} be any set consisting of $m+1$ vertices of G. Then as in the first part of this theorem S^{\prime} is a square free detour basis of G. Hence $|S|=\left|S^{\prime}\right|=m+1$, it follows that S consists of m vertices of X and any vertex of Y.

Theorem 2.19 Let $G=(V, E)$ be a wheel $W_{n}=K_{1}+C_{n-1}(n \geq 4)$. Then a set $S \subseteq$ V is a connected square free detour basis of G if and only if S consists of
(i) any two adjacent vertices of C_{n-1}, when $n=4$
(ii) the vertex of K_{1} with any two antipodal vertices of C_{n-1}, when $n=5$
(iii) the vertex of K_{1} with any two adjacent vertices of C_{n-1}, when $n \geq 6$.

Proof. This follows from Theorems 1.5 and 2.17.

Corollary 2.20 Let $G=(V, E)$ be a connected graph of order n.
(a) If G is the path P_{n} or the tree of order n, then $c d n_{\square f}(G)=n$.
(b) If G is the cycle graph C_{n}, then $c d n_{\square f}(G)=2$.
(c) If G is the complete graph $K_{n}(n \geq 2)$, then $c d n_{\square f}(G)=2$.
(d) If G is the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$, then $c d n_{\square f}(G)=m+1$.
(e) If G is the wheel $W_{n}(n \geq 4)$, then $c d n_{\square f}(G)= \begin{cases}2, & n=4 \\ 3, & n \geq 5\end{cases}$
Proof. (a) This follows from Corollaries 2.12 and 2.14.
(b) This follows from Theorem 2.17.
(c) This follows from Theorem 2.17.
(d) This follows from Theorem 2.18.
(e) This follows from Theorem 2.19.

Theorem 2.21 For each positive integer $k \geq$ 2 , there exists a connected graph G and a vertex v of degree k in G such that v belongs to every connected square free detour basis of G and $c d n_{\square f}(G)=k$.

Proof. For $k \geq 2$, let $G=K_{2}+v$. Then $\operatorname{deg}(v)=2=k, \quad c d n_{\square f}(G)=2=k \quad$ by Corollary 2.17 and the vertex v belongs to every connected square free detour basis of G. For $k \geq 3$, let $G=\left(K_{2} \cup(k-2) K_{1}+\right.$ v). Then clearly $\operatorname{deg}(v)=k$ and by Theorem 2.10, the vertex v belongs to every connected square free detour basis of G. Also, by Theorem 2.15, $c d n_{\square f}(G)=$ $1+k-2+1=k$.

Corollary 2.22 For each positive integer $k \geq 2$, and $D_{\square f}$ is square free detour diameter if $G=\left(K_{3} \cup k K_{1}\right)+v$ is a block graph, then $c d n_{\square f}(G)=n-D_{\square f}+1$.

Proof. This follows from Theorems 2.15 and 2.21.

Theorem 2.23 For any three integers α, β and n with $2 \leq \alpha<\beta \leq n$, there exists a connected graph G with order n and $d n_{\square f}(G)=\alpha$ and $c d n_{\square f}(G)=\beta$.

Proof. We prove this in two cases.
Case 1: If $2=\alpha<\beta$, let H be a path $P_{n-\alpha+1}$ of order $n-\alpha+1$ and let G be the graph obtained from H by adding $\alpha-2$ new vertices to H and joining them to any cut vertex of $P_{n-\alpha+1}$. Then G is the tree of
order n and so by Corollary 2.1.9, $d n_{\square f}(G)=\alpha$ and by Corollary 2.14, $c d n_{\square f}(G)=n=\beta$.

Case 2: $2 \leq \alpha<\beta<n$. Let $C=$ $w_{1}, w_{2}, w_{3}, \ldots, w_{n-\beta+1}, w_{1}$ be a cycle of order $n-\beta+1$ and let $P=$ $v_{1}, v_{2}, v_{3}, \ldots, v_{\beta-\alpha+1}$ be a path of order $\beta-$ $\alpha+1$. Let G_{1} be the graph obtained from C and P by identifying w_{1} of C with v_{1} of P. Let G be the graph obtained from G_{1} by adding $\quad \alpha-2$ new vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{\alpha-1}$ to G_{1} and joining u_{1} to the vertices $w_{n-\beta+1}$ and $w_{n-\beta}$ of C and joining each $u_{i}(2 \leq i \leq \alpha-1)$ to the vertex $v_{\beta-\alpha}$ of P. Then G is the connected of order n and shown in Figure 2.3.

Figure 2.3: G
Let $S_{1}=\left\{u_{2}, u_{3}, \ldots, u_{\alpha-1}, v_{\beta-\alpha+1}\right\}$ be the set of all end-vertices of G and let $S_{2}=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{\beta-\alpha}\right\}$ be the set of all cutvertices of G. Now, we show that $d n_{\square f}(G)=\alpha$ and $c d n_{\square f}(G)=\beta$. Clearly, the set S_{1} is not a square free detour set of G so that $d n_{\square f}(G) \geq\left|S_{1}\right|+1=\alpha$. Let $S^{\prime}=S_{1} \cup\left\{w_{2}\right\}$. Since every vertex of G lies on a detour joining a pair of vertices of S^{\prime}, S^{\prime} is a square free detour set of G and so it follows that from Theorem 1.1 that S^{\prime} is a square free detour basis of G. Hence $d n_{\square f}(G)=\alpha$. By Corollary 2.13, every connected square free detour set contains $S_{1} \cup S_{2}$. Since $S_{1} \cup S_{2}$ is not a square free detour set of G and since $S=S_{1} \cup S_{2} \cup$
$\left\{w_{2}\right\}$ is a connected square free detour set of G, it follows that $c d n_{\square f}(G)=|\mathrm{S}|=\beta$.

References

1. Chartrand, Gary, Garry L. Johns, and Songlin Tian. Detour distance in graphs. Annals of discrete mathematics. Vol. 55. Elsevier (1993): 127-136.
2. Chartrand, Garry L. Johns and Ping Zhang. The detour number of a graph. Util. Math. 64, (2003): 97-113.
3. Christy Rani K., and Priscilla Pacifica G. Square free detour number of some derived graphs. Proceedings of International Conference on Recent Trends in Mathematics and its Applications (2022): 49-52. isbn: 978-93-5680-181-3
4. Ramalingam, S. S., Asir, I. K., Athisayanathan, S. (2017). Upper Vertex Triangle Free Detour Number of a Graph. Mapana Journal of Sciences, 16(3), 27-40.
5. Santhakumaran, A. P., and S. Athisayanathan. On the connected detour number of a graph. Journal of Prime research in Mathematics 5 (2009): 149-170.
6. Sethu Ramalingam, $S .$, and S. Athisayanathan. Upper triangle free detour number of a graph. Discrete Mathematics, Algorithms and Applications 14.01 (2022): 2150094.
