ABSTRACT

In this paper, we introduce and investigate the concepts of connected square free detour set of a graph G and the connected square free detour number $\operatorname{cdn}_{\Box f}(G)$ of G. Certain general properties of these concepts are studied. It is proved that all the end-vertices and cut-vertices of a connected graph G belong to every connected square free detour set of G. It is also proved that if T is a tree of order $n \ge 2$, then $\operatorname{cdn}_{\Box f}(T) = n$ and every branch of a connected graph G with cut-vertices contain an element of a connected square free detour basis. The connected square free detour basis of certain classes of graphs are determined. For any three positive integers α , β and n with $2 \le \alpha < \beta \le n$, there exists a connected graph G of order n with $\operatorname{dn}_{\Box f}(G) = \alpha$ and $\operatorname{cdn}_{\Box f}(G) = \beta$.

Keywords: Connected detour number, connected square free detour set, connected square free detour number

Introduction

In this article, a graph G is considered to be a non-trivial, finite, undirected and connected graph of order n with neither loops nor multiple edges. Let D(x, y) be the longest path in G and an x - y path of D(x, y) is called x - y detour. The detour concept parameters on was developed by Chartrand [1]. The connected detour concept was introduced by A. P. Santhakumaran and S. Athisayanathan [5]. The detour concept was extended to triangle free detour concept by S. Athisayanathan et al. [4].

For any two vertices u, v in a connected graph G(V, E), the triangle free detour distance $D_{\Delta f}(u - v)$ is the length of longest u - vtriangle free path a in G. A u - v path of length $D_{\Delta f}(u, v)$ is called a u - v triangle free detour. A set $S \subseteq V$ of G is called a triangle free detour set of G if every vertex of G lies on a u - v triangle free detour joining a pair of vertices of S. The triangle free detour number $dn_{\Delta f}(G)$ of G is the minimum order of its triangle free detour sets. This triangle free detour number was studied by Athisayanathan and S. S. Sethu Ramalingam [6]. This concept was extended to square free detour number by K. Christy Rani and G. Priscilla Pacifica [3]. A set $S \subseteq V$ of G is called a square free

detour set if every vertex of G lies on a u - v square free detour joining a pair of vertices of S. The square free detour number of G denoted by $dn_{\Box f}(G)$ is defined as the minimum order of its square free detour sets.

G. PRISCILLA PACIFICA

Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628 001. E-mail: priscillamelwyn@gmail.com

K. CHRISTY RANI

Research Scholar, Reg.No.: 20122212092002, Departmant of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -627 012, Tamil Nadu, India. E-mail: christy.agnes@gmail.com **G. SETHU RAMALINGAM**

Assistant Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627002. E-mail: ssethusxc@gmail.com

In this article, we introduce the connected square free detour number denoted by $cdn_{\Box f}(G)$. We determine the connected square free detour number of some standard graphs.

The following theorems are used in the sequel. For the basic terminologies we refer to Chartrand [2].

Theorem 1.1 [3] Every end-vertex of a non-trivial connected graph G belongs to every detour set of G. Also, if the set S of all end-vertices of G is a square free detour set, then S is the unique square free detour basis for G.

Theorem 1.2 [3] Let G = (V, E) be a complete graph K_n $(n \ge 2, n \ne 4)$. Then a set $S \subseteq V$ is a square free detour basis of *G* if and only if *S* consists of any two adjacent vertices of *G*.

Theorem 1.3 [3] Let G = (V, E) be an odd cycle C_n of order $n \ge 3$. Then a set $S \subseteq V$ is a square free detour basis of *G* if and only if *S* consists of any two adjacent vertices of *G*.

Theorem 1.4 [3] Let G = (V, E) be an even cycle C_n of order $n \ge 4$. Then a set $S \subseteq V$ is a square free detour basis of *G* if and only if *S* consists of

(i) any two antipodal vertices of G, n = 4

(ii) any two adjacent vertices or two antipodal vertices of *G*, when $n \ge 5$.

Theorem 1.5 [3] Let *G* be a wheel $W_n = K_1 + C_{n-1}$ ($n \ge 4$). Then a set $S \subseteq V$ is a square free detour basis of *G* if and only if *S* consists of

(i) any two adjacent vertices or two antipodal vertices of C_{n-1} , when $4 \le n \le 9$.

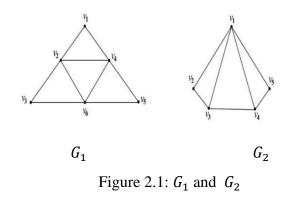
(ii) the vertex of K_1 with any two adjacent vertices of C_{n-1} , when $n \ge 10$ and n is even.

(iii) the vertex of K_1 with any two antipodal vertices of C_{n-1} , when $n \ge 11$ and n is odd.

2. Connected square free detour Number of a graph

Definition 2.1 Let G = (V, E) be a connected graph. A set $S \subseteq V$ is called a connected square free detour set of *G* if *S* is the detour set of *G* and the subgraph G[S] induced by *S* is connected. The connected square free detour number $cdn_{\Box f}(G)$ of *G* is the minimum order of its connected square free detour sets and any connected square free detour set of order $cdn_{\Box f}(G)$ is called a connected square free detour set of order $cdn_{\Box f}(G)$ is called a connected square free detour basis of *G*.

Example 2.2 For the graph G_1 given in Figure 2.1, the subsets $S_1 = \{v_1, v_6\}$, $S_2 = \{v_2, v_5\}$ and $S_3 = \{v_3, v_4\}$ are the three square free detour bases of G_1 so that $dn_{\Box f}(G_1) = 2$. It is clear that no two element subset of *V* is a connected square free detour set of *G*.



However, the set $S_4 = \{v_2, v_4, v_6\}$ is the connected square free detour basis of G_1 so that $cdn_{\Box f}(G_1) = 3$.

Similarly, for the graph G_2 given in Figure 2.1, the subset $S_5 = \{v_2, v_5\}$ is a square free detour basis but not a connected square free detour set of G_2 . The sets $S_6 = \{v_1, v_2, v_4\}$, $S_7 = \{v_1, v_3, v_4\}$, $S_8 = \{v_1, v_3, v_5\}$, $S_9 = \{v_2, v_3, v_4\}$ and $S_{10} = \{v_3, v_4, v_5\}$ are the connected square free detour bases of G_2 that yield $cdn_{\Box f}(G_2) = 3$. Thus, there can be more than one connected square free detour basis for a graph G.

Theorem 2.3 For any connected graph *G* of order $n \ge 2$, $2 \le dn_{\Box f}(G) \le cdn_{\Box f}(G) \le n$.

Proof. A square free detour set needs at least two vertices so that $dn_{\Box f}(G) \ge 2$. Since the connected square free detour set is also a square free detour set, $dn_{\Box f}(G) \le cdn_{\Box f}(G)$. Also since *G* is connected the set of all vertices of *G* is a connected square free detour set of *G*, it follows that $dn_{\Box f}(G) \le n$. Thus $2 \le dn_{\Box f}(G) \le cdn_{\Box f}(G) \le n$.

Corollary 2.4 For any connected graph *G*, if $cdn_{\Box f}(G) = 2$, then $dn_f(G) = 2$.

Proof. This follows from Theorem 2.3.

Definition 2.5 A vertex v in a graph G is a connected square free detour vertex if v belongs to every connected square free detour basis of G. If G has a unique connected square free detour basis of S, then every vertex in S is a connected square free detour vertex of G.

Example 2.6 For the graph G_1 given in Figure 2.1, the subset $S_4 = \{v_2, v_4, v_6\}$ is the unique connected square free detour basis of G_1 so that every vertex of G_1 is a connected square free detour vertex of G_1 .

Theorem 2.7 Every end-vertex of a nontrivial connected graph G belongs to every connected square free detour set of G.

Proof. Since every connected square free detour set is also a square free detour set of G the result follows from Theorem 1.1.

Theorem 2.8 Let *G* be a connected graph with cut-vertices and *S* a connected square free detour set of *G*. Then for any cut-vertex *y* of *G*, every component of G - y contains an element of *S*.

Proof: Let *y* be any cut-vertex of *G* such that one of the components, say *B* of G - y contains no element of *S*. Let $x \in V(B)$. Since *S* is a connected square free detour set, there exist vertices $u, v \in S$ such that *x* lies on some u - v square free detour path $P: u = x_0, x_1, x_2, ..., x, ..., x_r = v$ in *G*. Let *P'* be the u - x subpath of *P* and *P''* be the x - v subpath of *P*. Since *y* is a cut vertex of *G*, both *P'* and *P''* of *P* contain *y*, so that *P* is not a square free detour, which is a contradiction. Thus every component of *G* - *y* contains an element of *S*.

Corollary 2.9 Let G be a connected graph with cut-vertices and S a connected square free detour set of G. Then every branch of G contains an element of S.

Theorem 2.10 Let G be a connected graph with cut-vertices. Then every cut-vertex of G belongs to every connected square free detour set of G.

Proof. Let *G* be a connected graph and *y* be a cut-vertex of *G*. Let $G_1, G_2, G_3, ..., G_r (r \ge 2)$ be the components of G - y. Let *S* be a connected square free detour set of *G*. Then by Theorem 2.8, *S* contains at least one element from each component $G_i(1 \le i \le r)$ of G - y. Since G[S] is connected, it follows that $y \in S$.

Corollary 2.11 All the end-vertices and cut-vertices of a connected graph G belong to every connected square free detour set of G.

Proof. This follows from Theorems 2.7 and 2.9.

Corollary 2.12 If *G* is a connected graph of order *n* such that every vertex *x* of *G* is either an end-vertex or a cut-vertex, then $cdn_{\Box f}(G) = n$.

Proof. This follows from Corollary 2.11

Remark 2.13 The converse of the corollary 2.12 is not true. For the graph given in Figure 2.2, $cdn_{\Box f}(G) = n$, but the vertex *x* in *G* is neither a cut-vertex nor an end-vertex.

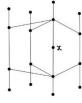


Figure 2.2: *G*

Corollary 2.14 If *T* is a tree of order *n*, then $cdn_{\Box f}(T) = n$.

Proof. This follows from Corollary 2.11.

Theorem 2.15 Let $G = (K_{n_1} \cup K_{n_2} \cup ... \cup K_{n_r} \cup kK_1) + v$ be a block graph of order $n \ge 4$, such that $r \ge 1$, each $n_i \ge 2$ and $n_1 + n_2 + \cdots + n_r + k = n-1$. Then $cdn_{\Box f}(G) = r + k + 1$.

Proof. Let $x_1, x_2, x_3, ..., x_k$ be the endvertices of *G*. Let *S* be a connected square free detour set of *G*. Then by Corollary 2.11, $y \in S$ and $x_i \in S(1 \le i \le k)$. Also, by Theorem 2.10, *S* contains a vertex from each component $K_{n_i}(1 \le i \le r)$. Now, choose exactly one vertex y_i from each K_{n_i} such that $y_i \in S(1 \le i \le r)$. Then $|S| \ge$ r + k + 1. Let $S^* = \{y, y_1, y_2, y_3, ..., y_r, x_1, x_2, x_3, ..., x_k\}$. Since every vertex of *G* lies on a detour joining a pair of vertices of S^* , it follows that S^* is a square free detour basis of *G*. Also, since $G[S^*]$ is connected, $cdn_{\Box f}(G) = r + k + 1$.

Remark 2.16 If the blocks of the graph G in Theorem 2.15 are not complete, then the theorem is not true.

Theorem 2.17 Let G = (V, E) be a complete graph $K_n (n \ge 2)$ or a cycle $C_n (n \ge 3)$. Then a set $S \subseteq V$ is a connected square free detour basis of *G* if and only if *S* consists of any two adjacent vertices of *G*.

Proof. Let $G = K_n$ be a complete graph of order $n(n \ge 2)$ or a cycle C_n and a set $S \subseteq V$ be a set of two adjacent vertices of G. Then by Theorems 1.2, 1.3 and 1.4, S is a square free detour basis of G. Since any set of two adjacent vertices is connected, it follows that S is a connected square free detour basis of G.

Now, let *S* be a connected square free detour basis of *G*. Let *S'* be any set consisting of two adjacent vertices of *G*. Then as in the first part of this theorem *S'* is a connected square free detour basis of *G*. Hence |S| = |S'| = 2 and it follows that *S* consists of any two adjacent vertices of *G*.

Theorem 2.18 Let G = (V, E) be a complete bipartite graph $K_{m,n}(2 \le m \le n)$ with partitions X and Y where |X| = m, |Y| = n. Then a set $S \subseteq V$ is a connected square free detour basis of G if and only if S consists of m vertices of X and exactly one vertex of Y.

Proof. Let $G = K_{m,n} (2 \le m \le n)$ be a complete bipartite graph with bipartite sets *X* and *Y*. Let $X = \{x_1, x_2, x_3, \dots, x_m\}$ and $Y = \{y_1, y_2, y_3, \dots, y_n\}$. Let S^* be a set of *m* elements of *X*. Then by Theorem 2.1.20, every vertex of *V* lies on any square free

detour $x_i y_j x_k (1 \le i \le k \le m, 1 \le j \le n, k \ne i)$ of length 2. Thus S^* is a square free detour basis of *G*. Since the bipartite set *X* consists of *m* non-adjacent vertices, the set S^* is not connected. It is clear that $S = S^* \cup \{y : y \in Y\}$ is a connected square free detour set of *G*. Thus |S| = m + 1, consequently *S* is a connected square free detour basis of *G*.

Conversely, assume that *S* is a connected square free detour basis of *G*. Let *S'* be any set consisting of m + 1 vertices of *G*. Then as in the first part of this theorem *S'* is a square free detour basis of *G*. Hence |S| = |S'| = m + 1, it follows that *S* consists of *m* vertices of *X* and any vertex of *Y*.

Theorem 2.19 Let G = (V, E) be a wheel $W_n = K_1 + C_{n-1} (n \ge 4)$. Then a set $S \subseteq V$ is a connected square free detour basis of *G* if and only if *S* consists of

(i) any two adjacent vertices of C_{n-1} , when n = 4

(ii) the vertex of K_1 with any two antipodal vertices of C_{n-1} , when n = 5

(iii) the vertex of K_1 with any two adjacent vertices of C_{n-1} , when $n \ge 6$.

Proof. This follows from Theorems 1.5 and 2.17.

Corollary 2.20 Let G = (V, E) be a connected graph of order *n*.

- (a) If *G* is the path P_n or the tree of order *n*, then $cdn_{\Box f}(G) = n$.
- (b) If G is the cycle graph C_n , then $cdn_{\Box f}(G) = 2$.
- (c) If G is the complete graph K_n $(n \ge 2)$, then $cdn_{\Box f}(G) = 2$.
- (d) If *G* is the complete bipartite graph $K_{m,n}$ ($2 \le m \le n$), then $cdn_{\Box f}(G) = m + 1$.

(e) If G is the wheel $W_n (n \ge 4)$, then $cdn_{\Box f}(G) = \begin{cases} 2, & n = 4\\ 3, & n \ge 5 \end{cases}$

Proof. (a) This follows from Corollaries 2.12 and 2.14.

- (b) This follows from Theorem 2.17.
- (c) This follows from Theorem 2.17.
- (d) This follows from Theorem 2.18.
- (e) This follows from Theorem 2.19.

Theorem 2.21 For each positive integer $k \ge 2$, there exists a connected graph *G* and a vertex *v* of degree *k* in *G* such that *v* belongs to every connected square free detour basis of *G* and $cdn_{\Box f}(G) = k$.

Proof. For $k \ge 2$, let $G = K_2 + v$. Then $\deg(v) = 2 = k$, $cdn_{\Box f}(G) = 2 = k$ by Corollary 2.17 and the vertex v belongs to every connected square free detour basis of G. For $k \ge 3$, let $G = (K_2 \cup (k-2)K_1 + v)$. Then clearly $\deg(v) = k$ and by Theorem 2.10, the vertex v belongs to every connected square free detour basis of G. Also, by Theorem 2.15, $cdn_{\Box f}(G) = 1 + k - 2 + 1 = k$.

Corollary 2.22 For each positive integer $k \ge 2$, and $D_{\Box f}$ is square free detour diameter if $G = (K_3 \cup kK_1) + v$ is a block graph, then $cdn_{\Box f}(G) = n - D_{\Box f} + 1$.

Proof. This follows from Theorems 2.15 and 2.21.

Theorem 2.23 For any three integers α , β and n with $2 \le \alpha < \beta \le n$, there exists a connected graph G with order nand $dn_{\Box f}(G) = \alpha$ and $cdn_{\Box f}(G) = \beta$.

Proof. We prove this in two cases.

Case 1: If $2 = \alpha < \beta$, let *H* be a path $P_{n-\alpha+1}$ of order $n - \alpha + 1$ and let *G* be the graph obtained from *H* by adding $\alpha - 2$ new vertices to *H* and joining them to any cut vertex of $P_{n-\alpha+1}$. Then *G* is the tree of

order *n* and so by Corollary 2.1.9, $dn_{\Box f}(G) = \alpha$ and by Corollary 2.14, $cdn_{\Box f}(G) = n = \beta$.

Case 2: $2 \le \alpha < \beta < n$. Let C = $w_1, w_2, w_3, \dots, w_{n-\beta+1}, w_1$ be a cycle of order $n - \beta + 1$ P =and let $v_1, v_2, v_3, \dots, v_{\beta-\alpha+1}$ be a path of order β – α + 1. Let G_1 be the graph obtained from C and P by identifying w_1 of C with v_1 of P. Let G be the graph obtained from G_1 by $\alpha - 2$ new adding vertices $u_1, u_2, u_3, \dots, u_{\alpha-1}$ to G_1 and joining u_1 to the vertices $w_{n-\beta+1}$ and $w_{n-\beta}$ of C and joining each $u_i (2 \le i \le \alpha - 1)$ to the vertex $v_{\beta-\alpha}$ of *P*. Then *G* is the connected of order *n* and shown in Figure 2.3.

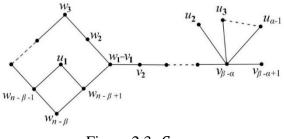


Figure 2.3: *G*

Let $S_1 = \{ u_2, u_3, \dots, u_{\alpha-1}, v_{\beta-\alpha+1} \}$ be the set of all end-vertices of G and let $S_2 =$ $\{v_1, v_2, v_3, \dots, v_{\beta-\alpha}\}$ be the set of all cutvertices of G. Now, we show that $dn_{\Box f}(G) = \alpha$ and $cdn_{\Box f}(G) = \beta$. Clearly, the set S_1 is not a square free detour set of G so that $dn_{\Box f}(G) \ge |S_1| + 1 = \alpha$. Let $S' = S_1 \cup \{w_2\}$. Since every vertex of *G* lies on a detour joining a pair of vertices of S', S' is a square free detour set of G and so it follows that from Theorem 1.1 that S' is a square free detour basis of G. Hence $dn_{\Box f}(G) = \alpha$. By Corollary 2.13, every connected square free detour set contains $S_1 \cup S_2$. Since $S_1 \cup S_2$ is not a square free detour set of G and since $S = S_1 \cup S_2 \cup$

 $\{w_2\}$ is a connected square free detour set of *G*, it follows that $cdn_{\Box f}(G) = |S| = \beta$.

References

- 1. Chartrand, Gary, Garry L. Johns, and Songlin Tian. Detour distance in graphs. Annals of discrete mathematics. Vol. 55. Elsevier (1993): 127-136.
- 2. Chartrand, Garry L. Johns and Ping Zhang. The detour number of a graph. Util. Math. 64, (2003): 97-113.
- 3. Christy Rani K., and Priscilla Pacifica G. Square free detour number of some derived graphs. Proceedings of International Conference on Recent Trends in Mathematics and its Applications (2022): 49-52. isbn: 978-93-5680-181-3
- Ramalingam, S. S., Asir, I. K., Athisayanathan, S. (2017). Upper Vertex Triangle Free Detour Number of a Graph. Mapana Journal of Sciences, 16(3), 27-40.
- 5. Santhakumaran, A. P., and S. Athisayanathan. On the connected detour number of a graph. Journal of Prime research in Mathematics 5 (2009): 149-170.
- 6. Sethu Ramalingam, S., and S. Athisayanathan. Upper triangle free detour number of a graph. Discrete Mathematics, Algorithms and Applications 14.01 (2022): 2150094.