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1. Introduction 

Pebbling, introduced by Lagarias and Saks, 

has sparked a lot of interest. F. R. K. Chung 

[1] was the first to put it into the literature, 

and many others have followed suit, 

including Hulbert, who published an 

overview of graph pebbling [2]. A lot has 

happened since Hulbert's survey first 

appeared in graph pebbling. Graph 

pebbling has been an important instrument 

for the conveyance of consumable 

resources for the past 30 years. Assume 

𝐺 = (𝑉, 𝐸) be a simple connected graph. 

Santhakumaran, A. P et al. introduced the 

monophonic distance in graphs [5]. 

Lourdusamy et al. [7] defined the 

monophonic pebbling number of a 

connected graphs and they find the 

monophonic pebbling number for various 

graphs. The line segment that connects two 

points on a curve is known as a chord. A 

𝑢 − 𝑣 path is monophonic if it has no 

chords for any two vertices, 𝑢 and 𝑣, in a 

connected graph 𝐺 [5]. The monophonic 

distance between 𝑢 and 𝑣 is the length of 

the longest 𝑢 − 𝑣 monophonic path, 

notated as 𝑑𝑚(𝑢, 𝑣), in 𝐺. The monophonic 

pebbling number of zero divisor graphs are 

determined in this study. 

2. Preliminaries 

For graph-theoretic terminology, the reader 

can go through [4]. 

Definition 2.1. [6] A chord in a path is an 

edge joining two non-adjacent vertices of a 

path. A 𝑢 − 𝑣 path with no chords is 

referred to as a monophonic path. The  
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ABSTRACT 

     Assume 𝐺 is a graph with some pebbles distributed over its vertices. A pebbling move 

is when two pebbles are removed from one vertex, one is thrown away, and the other is 

moved to an adjacent vertex. The monophonic pebbling number, 𝑓(𝐺), of a connected 

graph 𝐺, is the least positive integer n such that any distribution of n pebbles on 𝐺 allows 

one pebble to be carried to any specified but arbitrary vertex using monophonic path by 

a sequence of pebbling operations. In this paper we find the monophonic pebbling number 

of some zero divisor graphs. 
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monophonic pebbling number of a vertex 𝑣 

in 𝐺, 𝜇(𝐺, 𝑣), is the least positive integer n 

such that any distribution of n pebbles on 𝐺 

allows one pebble to be carried to 𝑣 using 

monophonic path by a sequence of pebbling 

moves. The monophonic pebbling number 

of a graph 𝐺, 𝜇(𝐺), is 𝜇(𝐺) = maxv𝜖𝑉 

𝜇(𝐺, 𝑣).  

Definition 2.2. [6] The zero-divisor graph 

of a ring 𝑅 is a simple graph whose set of 

vertices consists of all (non-zero) zero-

divisors, with an edge defined between 𝑥 

and 𝑦 if and only if  𝑥𝑦 = 0. It will be 

denoted by Γ(𝑍). 

Note that 2, 3, 4 in Z6 are zero-

divisors. For the element 2 in Z6 we use 𝑦2, 

for the element 3 in Z6 we use 𝑦3 and for the 

element 4 in Z6 we use 𝑦4. In general, for 

the element i in Zn we use 𝑦𝑖.  

Definition 2.3. [3] A complete bipartite 

graph is a simple bipartite graph with 

bipartition (𝑉1, 𝑉2) in which each vertex of 

𝑉1 is joined to each vertex of 𝑉2. If  |𝑉1| =

𝑚 and |𝑉2| = 𝑛 then a complete bipartite 

graph with bipartition (𝑉1, 𝑉2) is denoted by 

𝐾𝑚,𝑛. 

Notation 2.1. The number of pebbles on the 

vertex 𝑣 is denoted by 𝑝(𝑣). The number of 

pebbles on the vertex 𝑣 that is not on the 

monophonic path is denoted by 𝑝∼(𝑣). 

Let 𝑆 ⊆ 𝑉(𝐺). The total number of 

pebbles placed on the vertices not in 𝑆 is 

denoted  𝑝∼(𝑆). 

We will use 𝑀𝑖, where 1 ≤ 𝑖 ≤ 𝑛, 

to denote the monophonic path. we use 𝑀𝑖
∼ 

for the monophonic path which is left after 

defining 𝑀𝑖. Throughout the paper, we use 

𝑧 to denote the target vertex. 

Remark 2.1. Consider the graph 𝐺, which 

has a pebble configuration on its vertices. 

From 𝐺, we select a target vertex 𝑧. We can 

easily shift a pebble to 𝑧 if 𝑝(𝑧) = 1 or 

𝑝(𝑠) ≥ 2, where 𝑧𝑠 ∈ 𝐸(𝐺). When 𝑧 is the 

target vertex, we always assume that 

𝑝(𝑧) = 0 and 𝑃(𝑠) ≤ 1 for all 𝑧𝑠 ∈ 𝐸(𝐺). 

Result 2.1. Let 𝐺 be a connected graph. The 

monophonic distance between 𝑢 and 𝑣 is 0 

if and only if 𝑢 = 𝑣 and 1 when 𝑢 − 𝑣 is an 

edge of 𝐺. 

Theorem 2.1. [7] For the path 𝑃𝑛, 𝜇(𝑃𝑛) is 

2𝑛−1. 

Theorem 2.2. The monophonic pebbling 

number for the 𝑛-star graph where 𝑛 ≥ 2,  

𝜇(𝐾1,𝑛) is 𝑛 + 2. We observe that the 

monophonic distance is equal to the 

geodesic distance for star graphs. Hence, 

𝑓(𝐾1,𝑛) = μ(𝐾1,𝑛) = 𝑛 + 2. 

Theorem 2.3. The monophonic pebbling 

number for the complete bipartite graph is 

𝑚 + 𝑛. We observe that the monophonic 

distance is equal to the geodesic distance 

for complete bipartite graphs. Hence, 

𝑓(𝐾𝑚,𝑛) = μ(𝐾𝑚,𝑛) = 𝑚 + 𝑛. 

Theorem 2.4. The pebbling number of  

Γ(𝑍16) 𝑖𝑠 𝑓(Γ(𝑍16)) = 8. 

3. The Monophonic pebbling number of 

some zero divisor graphs 

In this section, we determine the 

monophonic pebbling number of zero 

divisor graphs. 

Theorem 3.1. For Γ(𝑍6) 𝑖𝑠 𝜇(Γ(𝑍6)) = 4.  

Proof.  Let V(Γ(Z6)) be {w2, w3, w4} and  

E(Γ(Z6))be{(w2, w3), (w3, w4)}. Since 

Γ(Z6) ≅ P3, the result follows from 

Theorem 2.1. 

Theorem 3.2. For Γ(𝑍6) 𝑖𝑠 𝜇(Γ(𝑍6)) =  4. 
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Proof.  Let  V(Γ(Z8)) = {w2, w4, w6} and 

E(Γ(Z8)) = {(w2, w4), (w4, w6)}. Since 

Γ(Z8) ≅ P3, then the result follows by 

Theorem 2.1. 

Theorem 3.3. For Γ(𝑍9) 𝑖𝑠 𝜇(Γ(𝑍9)) =  2.   

Proof.  Let  V(Γ(Z9)) be {w3, w6} and 

E(Γ(Z9)) be {(w3, w6)}. This is 

isomorphic to P2. Hence, the result follows 

from Theorem 2.1. 

Theorem 3.4. For Γ(𝑍10) 𝑖𝑠 𝜇(Γ(𝑍10)) =

 6.  

Proof. Let  V(Γ(Z10)) be 

{w2, w4, w5, w6, w8} and 

E(Γ(Z10))be{(w2, w5), (w4, w5),
(w6, w5), (w8, w5)}. Since Γ(Z10) ≅ K1,4, 

by Theorem 2.2, μ(Γ(Z10)) = 6. 

Theorem 3.5. For Γ(𝑍12), μ(Γ(𝑍12)) = 10. 

Proof. Let  V(Γ(Z12)) =

{w2, w3, w4, w6, w8, w9, w10} and 

E(Γ(Z12)) =

{(w2, w6), (w6, w8), (w6, w4), (w6, w10), 

(w8, w9), (w4, w9), (w4, w3), (w8, w3)}. 

Place a pebble each on w10 and w3 and 7 

pebbles on w9, we cannot move a pebble to 

w2 using the monophonic path. Hence, 

μ(Γ(Z12)) ≥ 10. Let us consider the 

distribution of 10 pebbles onΓ(Z12). 

 

Case 1: Let  z = wj where j = 2,3,9,10. 

 Fix z = w2. The monophonic 

distance from 𝑤2 to any other vertices is ≤
3. Let the monophonic path M1 be 

{w9, w4, w6, w2}. Then M1
∼ has the vertices 

w3, w6, w10 which are not on 𝑀1. By 

distributing 8 pebbles on 𝑀1 by Theorem 

2.1, we are able to place a pebble on 𝑧. If 

μ(z12) − μ(V(M1)) ≥ 3, then we can 

move a pebble to 𝑧. If μ(z12) −
μ(V(M1)) ≥ 3 then there will be two 

possibilities either the pebbling moves take 

place through the monophonic path 𝑀1 or 

using the alternative monophonic path 

{wj, w8, w6, w2}. Then we are done.  

Case 2: Let  z = wk where k =  4, 6, 8. 

  Fix z = w4. Let the monophonic path M2 

be {w10, w6, w4} and V(M2
∼) =

{w3, w8, w9, w2}. By Theorem 2.1, if  

μ(V(M2)) ≥ 4, we can reach the target. 

Otherwise, if μ(V(M2)) < 4 and μ(Z12) −

p(V(M2)) = p(v(M2
∼)) ≥ 7, then we can 

reach the target. Hence, we are done. 

 

Theorem 3.6. For Γ(𝑍14), μ(Γ(𝑍14)) = 8. 

Proof. The vertex set of Γ(Z14) is 

{w2, w4, w6, w7, w8, w10, w12} and the 

edge set of E(Γ(Z14)) is 

{(w2, w7), (w4, w7), (w6, w7), (w8, w7), 

(w10, w7), (w12, w7)}. Since Γ(Z14) ≅

K1,6, then by Theorem 2.2, μ(Γ(Z14)) = 8. 

Theorem 3.7. For Γ(𝑍15), μ(Γ(𝑍15)) = 6. 

Proof. Let the vertex set of Γ(Z15) be 

{w3, w5, w6w9, w10, w12} and the edge set 

of Γ(Z14) be 

{(w3, w5), (w9, w5), (w12, w5), (w10, w3), 

(w10, w9), (w10, w12)(w6, w5), (w6, w10)}
. The monophonic path of Γ(Z15) is 

M: w3, w5, w9. Since Γ(Z15) ≅ K2,4, then 

by Theorem 2.3, μ(Γ(Z15)) = 6. 

Theorem 3.8. For Γ(𝑍16), μ(Γ(𝑍16)) = 8. 

Proof.  Let the vertex set of Γ(Z16) be 

V(Γ(Z16)) =

{w2, w4, w6, w8, w10, w12, w14} and the 
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edge set of Γ(𝑍16) be E(Γ(Z16)) =

{(w8, w12), (w8, w4), (w8, w6), (w8, w10), 

(w8, w12),  (w8, w14), (w4, w12)}. We 

observe that for the graph Γ(𝑍16) the 

monophonic distance is equal to the 

geodesic distance. Thus, by Theorem 2.4, 

𝜇(Γ(𝑍16)) = 8. 

Theorem 3.9. For Γ(𝑍18), μ(Γ(𝑍18)) = 14. 

Proof. Let the vertex set of Γ(𝑍18) be 

{w2, w3, w4, w6, w8, w9, w10, w12, w14, w15, w16} 

and the edge set of Γ(𝑍18) be 

{w9wi, w6wj, w12w15, w12w3} where i =

 6, 12, 2, 4, 8, 10, 14, 16 and j =  12, 15. 

To prove the necessary part, let  z = w16. 

Without loss of generality, consider the 

monophonic path M: w16, w9, w12, w15. 

Place a pebble each on 

w14, w13, w10, w8, w4, w2 and 7 pebbles on 

w16. Then we cannot move a pebble to 𝑧 

using the monophonic path. Hence, 

μ(Γ(Z18)) ≥ 14. Let us consider the 

distribution of 14 pebbles on Γ(Z18). 

 

Case 1: Let  z = wj where j =

 {2,4,8,10, 13, 14, 15, 16}. 

 Fix z = w2. Then dm(w2, wx) ≤ 3 

where wx ∈ V(Γ(Z18)). Let us consider the 

monophonic path M1: w13, w12, w9, w2. If 

p(V(P1)) ≥ 8, we are done by Theorem 

2.1. Suppose p(V(M1)) < 8. Let V(M1
∼) =

{w15, w6, w4, w8, w10, w14, w16}. We can 

reach the target for the following 

conditions. If 
p(w15)

2
+ p(w6) ≥ 4 or 

 
p(N(w9))

2
+ p(w9) ≥ 2, we are done.  

Case 2: Let z = wk where k =  {13, 15}.  

Fix z = w13. Let us consider the 

monophonic path M2: w13, w12, w9, w2 and 

V(M2
∼) =

{w15, w6, w4, w8, w10, w14, w16}. If 

p(V(M2)) ≥ 8, we are done by Theorem 

2.1. Suppose p(V(M2)) < 8, then  
𝑝(𝑤15)

2
+

𝑝(𝑤12) ≥ 2 or 
𝑝(𝑉𝑀2

∼)

2
+ 𝑝(𝑤9) ≥ 4, we 

can reach the target. 

Case 3: Let z = w9. 

 Without loss of generality, let 

M3: w15, w6, w9 and V(M3
∼) =

{w13, w12, w2, w4, w8, 

w10, w14, w16}. If p(V(M3)) ≥ 4 we can 

reach the target by Theorem 2.1, without 

using the pebbles from M3
∼. Suppose 

p(V(M3)) < 4. If any one of the vertices of 

N(w9) has at least 2 pebbles or ⌊
p(w13)

2
⌋ ≥

2, we are done. 

Case 4: Let  z = ws where s = {w6, w12}. 

Without loss of generality, let z =
w6. Let M4: w6, w9, w2. Since 𝑤9 is the 

neighbourhood of wk, w12, w6 where k =
2, 4, 8, 10, 14, 16. If 𝑤9 receives at least 2 

pebbles after the pebbling moves from 𝑤𝑘 

we are done. 

Thus, μ(Γ(Z18)) = 14. 

Theorem 3.10. For Γ(𝑍2𝑝), μ (Γ(𝑍2𝑝)) =

𝑝 + 1, where p is any prime number. 

Proof.  Let the vertex set of Γ(Z2p) be 

V (Γ(Z2p)) = {w2, w4, ⋯ , w2p−2, wp} and 

the edge set of Γ(Z2p) be E (Γ(Z2p)) =

{wiwp} where 2 ≤ i ≤ 2p − 2. Since 

Γ(Z2p) ≅ K1,p−1, by Theorem 2.2, we can 

move a pebble to any vertex of Γ(𝑍2𝑝). 
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