ABSTRACT

The intenstion of this paper is to instigate $nIs_{\alpha}g$ – submaximal space and study their characteristics and properties. Further, we have introduced $nIs_{\alpha}g$ – locally – \star – closed set and its equivalent condition is discussed.

Keywords: \mathcal{M}^* - dense, \mathcal{M}^* - codense, $nIs_{\alpha}g$ - locally - \star - closed set, nIg - submaximal space, $nIs_{\alpha}g$ - submaximal space.

1. Introduction:

M.Lellis Thivagar[4] proposed the notion of N.T.Sp. Parimala et.al[6] brought up the idea of ideals in N.T.Sp. and investigated certain properties. In this paper, we present the notion of $nIs_{\alpha}g$ – locally – * – closed set (briefly, $nIs_{\alpha}g$ – $L^*C.S.$) and discussed their characteristics. Further, we have introduce the notion of $nIs_{\alpha}g$ – submaximal space (briefly, $nIs_{\alpha}g$ – Sub.Max. Sp.) and investigated certain characteristics.

2.Preliminaries

Definition 2.1 A subset C of a N.T.Sp.(Γ , \mathcal{M}) is labeled as nano semi α – open sets (briefly, ns_{α} – Op.S.)[9] if there exists a $n\alpha$ – Op.S. \mathcal{P} in Γ such that $\mathcal{P} \subseteq$ $C \subseteq n - cl(\mathcal{P})$ or equivalently if $C \subseteq n - cl(n\alpha - int(\mathcal{P}))$.

Definition 2.2 Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp. and $(.)_n^*$ be a set operator from $\mathfrak{Q}(\Gamma) \to \mathfrak{Q}(\Gamma), (\mathfrak{Q}(\Gamma))$ is the powerset of Γ). For a subset $\mathfrak{A} \subset \Gamma, \mathfrak{A}_n^* (\mathcal{J}, \mathcal{M}) = \{x \in \Gamma: \mathcal{Q}_n \cap \mathfrak{A} \notin \mathcal{I} \text{ for every } \mathcal{Q}_n \in \mathcal{Q}_n(x)\}$ is termed as *n*-local function[6] of \mathfrak{A} with respect to \mathcal{I} and \mathcal{N} . We will simply write \mathfrak{A}_n^* for $\mathfrak{A}_n^*(\mathcal{I}, \mathcal{N})$.

Definition 2.3 A subset \mathbb{H} of a $n\mathcal{J}$ Sp. ($\Gamma, \mathcal{M}, \mathcal{J}$) is labeled as nano ideal semi α generalized Cl.S. (briefly, $nIs_{\alpha}g - \text{Cl.S.}$)[10] if $\mathbb{H}_{n}^{*} \subseteq \mathfrak{K}$ whenever $\mathbb{H} \subseteq \mathfrak{K}$ and \mathfrak{K} is $ns_{\alpha} - \text{Op.S.}$

Definition 2.4 A subset \mathbb{H} of a \mathcal{I} Sp. $(\Gamma, \mathfrak{T}, \mathcal{J})$ is labeled as * – dense set (briefly, * – Dn.S.) [5] if $cl^*(\mathbb{H}) = \Gamma$.

Definition 2.5 A subset \mathbb{H} of a $n\mathcal{I}$ Sp. ($\Gamma, \mathcal{M}, \mathcal{J}$) is labeled as $\mathcal{M}^* - \text{Dn.S.[7]}$ if $n - cl^*(\mathbb{H}) = \Gamma$.

G.BABY SUGANYA

Research Scholar(Reg.No : 19222072092002), Department of Mathematics, Govindammal College for Women (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamil Nadu, India), Tiruchendur, Tamil Nadu, India, sugangvs@gmail.com.

Dr. S. PASUNKILIPANDIAN

Associate Professor, Department of Mathematics, Aditanar College of Arts and Science (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India), Tiruchendur, Tamil Nadu, India, pasunkilipandian@yahoo.com.

Dr. M.KALAISELVI

Associate Professor, Department of Mathematics, Govindammal College for Women, Tiruchendur (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India), Tamil Nadu, India, kesriharan@gmail.com.

Definition 2.6 A subset \mathbb{H} of a $n\mathcal{I}$ Sp. ($\Gamma, \mathcal{M}, \mathcal{J}$) is labeled as pre - nI - open[11] if $\mathbb{H} \subseteq n - int(n - cl^*(\mathbb{H}))$.

Definition 2.7 An ideal \mathcal{I} in a $n\mathcal{I}$ Sp. ($\Gamma, \mathcal{M}, \mathcal{J}$) is called \mathcal{N} – condense ideal [8] if $\mathcal{N} \cap \mathcal{I} = \emptyset$.

Definition 2.8 A subset \mathbb{H} of an \mathcal{I} Sp. (Γ , \mathcal{I}) is labeled as \mathcal{I} - L^*C . S.S.[5] if there exists an Op.S. Γ and a * – Cl.S. \mathfrak{f} such that $\mathbb{H} = \Gamma \cap \mathfrak{f}$.

Definition 2.9 A T.Sp. (Γ, \mathfrak{T}) is labeled as a g – Sub.Max. Sp. [2] if every Dn.S. is g – Op.S.

Definition 2.10 An \mathcal{I} Sp. $(\Gamma, \mathfrak{T}, \mathcal{I})$ is labeled as an \mathcal{I} – Sub.Max. Sp. [1] if every * – Dn.S. is Op.S.

3. $nIs_{\alpha}g$ – Locally – * – Closed Sets

Definition 3.1 A subset \mathbb{H} of a $n\mathcal{I}$ Sp. is $nIs_{\alpha}g - L^{*}C.S.$ if there exists an $nIs_{\alpha}g - Op.S. Q$ and a $n^{*} - Cl.S.$ f such that $\mathbb{H} = Q \cap \mathfrak{f}.$ **Example 3.2** Let $\Gamma = \{r_{1}, r_{2}, r_{3}, r_{4}\};$ $\Gamma/\mathcal{R} = \{\{r_{1}\}, \{r_{2}, r_{4}\}, \{r_{3}\}\}; \mathcal{X} = \{r_{2}, r_{4}\}; \mathcal{J} = \{\emptyset, \{r_{2}\}\}. \mathcal{M} = \{\emptyset, \Gamma, \{r_{2}, r_{4}\}, nIs_{\alpha}g - Cl.S.$ s are $\emptyset, \Gamma, \{r_{2}\}, \{r_{1}, r_{3}\}, \{r_{1}, r_{2}, r_{3}\}, \{r_{1}, r_{3}, r_{4}\}. n^{*} - Cl.S.$ s are $\emptyset, \Gamma, \{r_{2}\}, \{r_{1}, r_{3}\}, \{r_{1}, r_{3}\}, \{r_{1}, r_{2}, r_{3}\}, \{r_{1}, r_{2}, r_{3}\}, \{r_{1}, r_{2}, r_{3}\}, \{r_{1}, r_{3}, r_{4}\}.$ Here, the $nIs_{\alpha}g - L^{*}C.S.$ s are $\emptyset, \Gamma, \{r_{2}\}, \{r_{4}\}, \{r_{1}, r_{3}\}, \{r_{2}, r_{4}\}, \{r_{1}, r_{2}, r_{3}\}, \{r_{1}, r_{3}, r_{4}\}.$ **Theorem 3.3** Let $(\Gamma, \mathcal{M}, \mathcal{I})$ be a $n\mathcal{I}$ Sp.

Theorem 3.3 Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp. and \mathbb{H} be a subset of Γ . Then the underneath affirmations are analogous.

- (a) \mathbb{H} is $nIs_{\alpha}g L^{\star}C.S.$
- (b) $\mathbb{H} = Q \cap (n cl^*(\mathbb{H}))$ for some $nls_{\alpha}g - \text{Op.S. }Q$.
- (c) $(n cl^*(\mathbb{H})) \mathbb{H} = \mathbb{H}_n^* \mathbb{H}$ is $nls_{\alpha}g - Cl.S.$
- (d) $\mathbb{H} \cup (\Gamma (n cl^*(\mathbb{H}))) =$ $\mathbb{H} \cup (\Gamma \mathbb{H}_n^*) \text{ is } nIs_{\alpha}g$ Op.S.
- Proof: (a) \Rightarrow (b): If \mathbb{H} is $nIs_{\alpha}g I^*C$ s, then there exists a $nIs_{\alpha}g Op$ S

 $L^*C.S.$, then there exists a $nIs_{\alpha}g$ – Op.S.

Q and a n^* – Cl.S. f such that $\mathbb{H} = Q \cap f$. Clearly, $\mathbb{H} \subset \mathcal{Q} \cap n - cl^*(\mathbb{H})$. Since f is $n^* - \text{Cl.S.}, n - cl^*(\mathbb{H}) \subset n - cl^*(\mathfrak{f}) = \mathfrak{f}$ and so $Q \cap (n - cl^*(\mathbb{H})) \subset Q \cap \mathfrak{f} = \mathbb{H}$. Therefore, $\mathbb{H} = Q \cap (n - cl^*(\mathbb{H})).$ $(b) \Rightarrow (c): \text{Now}, (n - cl^*(\mathbb{H})) - \mathbb{H} =$ $\mathbb{H}_n^* - \mathbb{H} = \mathbb{H}_n^* \cap (\Gamma - \mathbb{H}) = \mathbb{H}_n^* \cap$ $\left(\Gamma - \left(\mathcal{Q} \cap \left(n - cl^*(\mathbb{H})\right)\right)\right)$. Let \mathfrak{K} be a n - Op.S. such that $(n - cl^*(\mathbb{H})) - \mathbb{H} \subset$ \mathfrak{K} . Then $\mathbb{H}_n^* \cap (\Gamma - Q) \subset \mathbb{H}$ and so $(\Gamma - Q) \subset (\Gamma - \mathbb{H}_n^*) \cup \mathfrak{K}$. Since $\Gamma - Q$ is $nIs_{\alpha}g$ – Cl.S. and $(\Gamma - \mathbb{H}_n^*) \cup \Re$ is n – Op.S., $n - cl^*(\Gamma - Q) \subset (\Gamma - \mathbb{H}_n^*) \cup \mathfrak{K}$ and $\mathbb{H}_n^* \cap (n - cl^*(\Gamma - Q)) \subset \mathfrak{K}$. Since $\mathbb{H}_n^* \cap (\Gamma - Q) \subset \mathbb{H}_n^*, \ \left(\mathbb{H}_n^* \cap (\Gamma - Q)\right) \subset \mathbb{H}_n^*$ $\mathcal{Q})\Big)_{n}^{*} \subset (\mathbb{H}_{n}^{*})_{n}^{*}$. Also, $\mathbb{H}_{n}^{*} \cap (\Gamma - \mathcal{Q}) \subset$ $\Gamma - \mathcal{Q}$ implies that $\left(\mathbb{H}_n^* \cap (\Gamma - \mathcal{Q})\right)_n^* \subset$ $(\Gamma - Q)_n^* \subset n - cl^*(\Gamma - Q)$. Therefore, $\left(\mathbb{H}_{n}^{*}\cap(\Gamma-\mathcal{Q})\right)_{n}^{*}\subset\mathbb{H}_{n}^{*}\cap(n-cl^{*}(\Gamma-\mathcal{Q}))$ $Q)) \subset \mathfrak{K}$. Hence, $((n - cl^*(\mathbb{H})) - \mathbb{H})_n^* \subset$ \mathfrak{K} and so($n - cl^*(\mathbb{H})$) – \mathbb{H} is $nIs_{\alpha}g$ – Cl.S. $(c) \Rightarrow (d)$: Since $\Gamma - ((n - cl^*(\mathbb{H})) - cl^*(\mathbb{H}))$ $\mathbb{H}) = \mathbb{H} \cup (\Gamma - (n - cl^*(\mathbb{H}))), \mathbb{H} \cup$ $(\Gamma - (n - cl^*(\mathbb{H})))$ is $nIs_{\alpha}g - Op.S$. $(d) \Longrightarrow (a)$: Since $\mathbb{H} = \left(\mathbb{H} \cup \left(\Gamma - \Gamma\right)\right)$ $(n - cl^*(\mathbb{H}))) \cap (n - cl^*(\mathbb{H}))$ and $n - cl^*(\mathbb{H})$ $cl^*(\mathbb{H})$ is n^* – Cl.S., by hypothesis, \mathbb{H} is $nIs_{\alpha}g - L^{*}C.S.$ **Remark 3.4** If f is a n – Op. subset of a $n\mathcal{J}$ Sp. ($\Gamma, \mathcal{M}, \mathcal{J}$), then clearly f is $nIs_{\alpha}g$ – $L^*C.S.$ The reverse implication is irrational. For instance, consider $(\Gamma, \mathcal{M}, \mathcal{J})$ as in Example 3.2. If $Q = \{r_1, r_3, r_4\}$; f = $\{\mathcal{r}_1, \mathcal{r}_3\}$ then $\mathfrak{f}_n^* = \{\mathcal{r}_1, \mathcal{r}_3\}$. Clearly, \mathfrak{f} is n^* – Cl.S. Here, $Q \cap f = \{r_1, r_3\}$ is $nIs_{\alpha}g - L^{*}C.S.$ but $\{\mathcal{T}_{1}, \mathcal{T}_{3}\}$ is not $nIs_{\alpha}g$ – Op.S. **Theorem 3.5** Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{I}$ Sp. and \mathbb{H} be a subset of Γ . If \mathbb{H} is $nIs_{\alpha}g$ – $L^*C.S.$ and nI - Dn.S., then \mathbb{H} is $nIs_{\alpha}g -$ Op.S.

Proof: If \mathbb{H} is $nIs_{\alpha}g - L^*C.S.$, by Theorem 3.3(d), $\mathbb{H} \cup (\Gamma - (n - cl^*(\mathbb{H})))$ is $nIs_{\alpha}g - \text{Op.S.}$ Since \mathbb{H} is nI - Dn.S., then $\mathbb{H}_n^* = \Gamma$ so that $n - cl^*(\mathbb{H}) = \Gamma$ which implies that \mathbb{H} is $nIs_{\alpha}g - \text{Op.S.}$ **Corollary 3.6** Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp. and \mathbb{H} be nI – dense subset of Γ . Then \mathbb{H}

is $nIs_{\alpha}g - L^*C.S$. if and only if \mathbb{H} is $nIs_{\alpha}g - \text{Op.S}$.

Proof: The proof is trivial.

Corollary 3.7 Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp. Then the underneath affirmations are analogous.

- (a) Every subset of Γ is $nIs_{\alpha}g L^*C.S$.
- (b) Every \mathcal{M}^* Dn.S. is $nIs_{\alpha}g$ Op.S.

Proof: (a) \Rightarrow (b): The argument emerges from Theorem 3.3(d).

 $(b) \Longrightarrow (a): \text{ For any subset } \mathbb{H} \text{ of } \Gamma, \\ \text{consider } \mathcal{Q} = \mathbb{H} \cup (\Gamma - (n - cl^*(\mathbb{H}))). \\ \text{Then } n - cl^*(\mathcal{Q}) = n - cl^*(\mathbb{H}) \cup (\Gamma - (n - cl^*(\mathbb{H}))) = \Gamma \text{ so that } \mathcal{Q} \text{ is } \mathcal{M}^* - (n - cl^*(\mathbb{H}))$

Dn.S. By hypothesis, Q is $nIs_{\alpha}g$ – Op.S. By Theorem 3.3, \mathbb{H} is $nIs_{\alpha}g - L^*C.S$.

4. $nIs_{\alpha}g$ – Submaximal Spaces

Definition 4.1 A $n\mathcal{I}$ Sp. $(\Gamma, \mathcal{M}, \mathcal{J})$ is labeled as:

- (i) nI Sub.Max. Sp. if every $\mathcal{N}^* - \text{Dn.S. is } n - \text{Op.S.}$
- (ii) $nIs_{\alpha}g$ Sub.Max. Sp. if every \mathcal{N}^* Dn.S. is $nIs_{\alpha}g$ Op.S.

Example 4.2 Let $\Gamma = \{r_1, r_2, r_3, r_4\}$; $\Gamma/\mathcal{R} = \{\{r_1\}, \{r_2, r_3\}, \{r_4\}\}; \mathcal{X} = \{r_1, r_3\}; \mathcal{M} = \{\emptyset, \Gamma, \{r_1\}, \{r_1, r_2, r_3\}, \{r_1, r_2\}\}.$ (i) Let $\mathcal{J} = \{\emptyset, \{r_1\}, \{r_3\}, \{r_4\}, \{r_1, r_3\}, \{r_1, r_4\}, \{r_3, r_4\}, \{r_1, r_3, r_4\}\}. \mathcal{M}^* - Dn.S.s are <math>\Gamma, \{r_1, r_2\}, \{r_1, r_2, r_3\}.$ In this case, every $\mathcal{N}^* - Dn.S.$ is n - Op.S.Therefore, $(\Gamma, \mathcal{M}, \mathcal{J})$ is nl - Sub.Max. Sp.(ii) Let $\mathcal{J} = \{\emptyset, \{r_2\}, \{r_3\}, \{r_4\}, \{r_2, r_3\}, \{r_2, r_4\}, \{r_3, r_4\}, \{r_2, r_3, r_4\}. nIs_{\alpha}g - Cl.S.s are <math>\emptyset, \Gamma, \{r_2\}, \{r_3\}, \{r_4\}, \{r_2, r_3\}, \{r_2, r_4\}, \{r_3, r_4\}, \{r_2, r_3, r_4\}. \mathcal{M}^* -$ Dn.S.s are Γ , $\{r_1\}$, $\{r_1, r_2\}$, $\{r_1, r_3\}$, $\{r_1, r_3\}$, $\{r_1, r_3\}$, $\{r_2, r_3\}$, $\{r_3, r_3\}$, $\{r_$ \mathcal{C}_4 , { \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 }, { \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_4 }, { \mathcal{C}_1 , \mathcal{C}_3 , \mathcal{C}_4 }. In this case, every \mathcal{M}^* – Dn.S. is $nIs_{\alpha}g$ – Op.S. Therefore, $(\Gamma, \mathcal{M}, \mathcal{J})$ is $nIs_{\alpha}g$ – Sub.Max. Sp. **Proposition 4.3** Every nI – Sub.Max. Sp. is $nIs_{\alpha}g$ – Sub.Max. Sp. Proof: Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be nI – Sub.Max. Sp. That is, every \mathcal{N}^* – Dn.S. is n – Op.S. Since every n - Op.S. is $nIs_{\alpha}g -$ Op.S., $(\Gamma, \mathcal{M}, \mathcal{J})$ be $nIs_{\alpha}g$ – Sub.Max. Sp. **Reamrk 4.4** A $nIs_{\alpha}g$ – Sub.Max. Sp. need not be a nl – Sub.Max. Sp. For instance, in the Example 4.2 (ii), $(\Gamma, \mathcal{M}, \mathcal{J})$ is $nIs_{\alpha}g$ – Sub.Max. Sp. but not nI – Sub.Max. Sp. **Definition 4.5** A subset \mathbb{H} of a $n\mathcal{I}$ Sp. $(\Gamma, \mathcal{M}, \mathcal{J})$ is labeled as \mathcal{M}^* – codense if its complement $\Gamma - \mathbb{H}$ is $\mathcal{M}^* - \text{Dn.S.}$ **Example 4.6** In the Example 4.2 (i), Γ , { \mathcal{r}_1 , \mathcal{r}_2 }, { \mathcal{r}_1 , \mathcal{r}_2 , \mathcal{r}_3 } are \mathcal{M}^* – Dn.S. Therefore, their complements

 \emptyset , { \mathscr{T}_4 }, { \mathscr{T}_3 , \mathscr{T}_4 } are \mathcal{M}^* – codense. **Theorem 4.7** Let (Γ , \mathcal{M} , \mathcal{J}) be a $n\mathcal{J}$ Sp. Then the underneath affirmations are analogous.

- (i) $(\Gamma, \mathcal{M}, \mathcal{J})$ is $nIs_{\alpha}g -$ Sub.Max. Sp.
- (ii) Every \mathcal{M}^* codense subset \mathbb{H} of Γx is $nIs_{\alpha}g$ Cl.S.

Proof: (*i*) \Rightarrow (*ii*): Assume that ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g$ – Sub.Max. Sp. Let \mathbb{H} be a \mathcal{M}^* – codense subset of Γ . Then its complement \mathbb{H}^c is \mathcal{M}^* – Dn.S. Since ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g$ – Sub.Max. Sp., \mathbb{H}^c is $nIs_{\alpha}g$ – Op.S. Therefore, \mathbb{H} is $nIs_{\alpha}g$ – Cl.S.

(*ii*) \Rightarrow (*i*): Assume that every \mathcal{M}^* – subset of Γ is $nIs_{\alpha}g$ – Cl.S. Let \mathbb{H} be a \mathcal{M}^* – dense subset of Γ . Therefore, its complement \mathbb{H}^c is \mathcal{M}^* – codense so that it is $nIs_{\alpha}g$ – Cl.S. which implies \mathbb{H} is $nIs_{\alpha}g$ – Op.S. Hence, ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g$ – Sub.Max. Sp.

Theorem 4.8 Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp. Then the underneath affirmations are analogous.

- (i) $(\Gamma, \mathcal{M}, \mathcal{J})$ is $nIs_{\alpha}g$ Sub.Max. Sp.
- (ii) Every pre nl open set is $nls_{\alpha}g Op.S.$

Proof: (*i*) \Rightarrow (*ii*): Assume that the $n\mathcal{J}$ Sp. ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g$ - Sub.Max. Sp. and $\mathbb{H} \subseteq \Gamma$ be pre - nI - open. Then $\mathbb{H} = Q \cap \mathfrak{K}, Q \in \mathcal{M}$ and \mathfrak{K} is $\mathcal{M}^* - \text{Dn. S}$. Since Γ is $nIs_{\alpha}g$ - Sub.Max. Sp., \mathfrak{K} is $nIs_{\alpha}g - \text{Op.S}$. Since the intersection of two $nIs_{\alpha}g - \text{Op.S}$. Since the intersection of two $nIs_{\alpha}g - \text{Op.S}$. Since the intersection of two $nIs_{\alpha}g - \text{Op.S}$. Since the intersection of two $nIs_{\alpha}g - \text{Op.S}$. Is a $nIs_{\alpha}g - \text{Op.S}$. \mathbb{H} is $nIs_{\alpha}g - \text{Op.S}$. (*ii*) \Rightarrow (*i*): Let \mathbb{H} be $\mathcal{M}^* - \text{Dn.S}$. in ($\Gamma, \mathcal{M}, \mathcal{J}$). By hupothesis, \mathbb{H} is pre - nI - open which implies that \mathbb{H} is $nIs_{\alpha}g - \text{Op.S}$. Hence, ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g - \text{Sub.Max}$. Sp.

Theorem 4.9 Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp. Then the underneath affirmations are analogous.

- (i) $(\Gamma, \mathcal{M}, \mathcal{J})$ is a $nIs_{\alpha}g$ Sub.Max. Sp.
- (ii) For every subset $\mathbb{H} \subset \Gamma$, if \mathbb{H} is not a $nIs_{\alpha}g$ Op.S., then $\mathbb{H} = n - int(n - cl^*(\mathbb{H})) \neq \emptyset$.
- (iii) $\zeta = \{Q \mathbb{H}: Q \text{ is } nls_{\alpha}g Op.S \text{ and } n int^*(\mathbb{H}) = \emptyset\}$ where ζ is the family of all $nls_{\alpha}g - Op.S$.

Proof: (*i*) \Rightarrow (*ii*): Suppose that $\mathbb{H} - (n - int(n - cl^*(\mathbb{H}))) = \emptyset$. Then $\mathbb{H} \subset n - int(n - cl^*(\mathbb{H}))$ which implies \mathbb{H} is pre - nI - open. Since Γ is $nIs_{\alpha}g - Sub.Max$. Sp., \mathbb{H} is $nIs_{\alpha}g - Op.S$. which is a contradiction. Hence, $\mathbb{H} - (n - int)$

 $int(n-cl^*(\mathbb{H}))) \neq \emptyset.$

 $(ii) \Rightarrow (i)$: Let \mathbb{H} be pre - nI - open. Suppose that \mathbb{H} is not $nIs_{\alpha}g - \text{Op.S.}$ Then by hypothesis, $\mathbb{H} = n - int(n - cl^*(\mathbb{H})) \neq \emptyset$ which implies that $\mathbb{H} \nsubseteq$ $(n - int(n - cl^*(\mathbb{H})))$ which is a

contradiction. Hence, \mathbb{H} is $nIs_{\alpha}g$ – Op.S. which implies that $(\Gamma, \mathcal{M}, \mathcal{J})$ is a $nIs_{\alpha}g$ – Sub.Max. Sp.

 $(i) \Rightarrow (iii)$: Assume that $\eta = \{Q - \mathbb{H}: Q\}$ is $nIs_{\alpha}g - \text{Op.S}$ and $n - int^*(\mathbb{H}) = \emptyset$. Let $\Re \in \zeta$. Since $\Re = \Re - \emptyset$ and $n - \emptyset$ $int^*(\emptyset) = \emptyset$ then $\zeta \subset \eta$. Let $\Re \in \eta$. Then $\mathfrak{K} = \mathcal{Q} - \mathbb{H}$, where \mathcal{Q} is $nIs_{\alpha}g - \text{Op.S.}$ and $n - int^*(\mathbb{H}) = \emptyset$. Then $\mathfrak{K} = Q \cap$ $(\Gamma - \mathbb{H})$. Since $n - int^*(\mathbb{H}) = \emptyset, \Gamma - \emptyset$ $(n - int^*(\mathbb{H})) = n - cl^*(\Gamma - \mathbb{H}) = \Gamma.$ Since Γ is $nIs_{\alpha}g$ – Sub.Max. Sp., Γ – \mathbb{H} is $nIs_{\alpha}g$ – Sub.Max. Sp. Therefore, \Re is $nIs_{\alpha}g - Op.S.$ Hence, $\eta \subset \zeta$. $(iii) \Rightarrow (i)$: Let \mathbb{H} be a pre -nl -openset. Then $\mathbb{H} = \mathfrak{K} \cap \mathcal{Q}$, where \mathfrak{K} is $n - \mathcal{Q}$ Op.S. and Q is \mathcal{M}^* – Dn.S. Hence, n – $cl^*(Q) = \Gamma$ and so $n - int^*(\Gamma - Q) = \emptyset$. This implies $\mathbb{H} = \Re - (\Gamma - Q)$ and n - Q $int^*(\Gamma - Q) = \emptyset$. Since every n - Op.S. is $nIs_{\alpha}g$ – Op.S., \Re is $nIs_{\alpha}g$ – Op.S. Hence, \mathbb{H} is $nIs_{\alpha}g$ – Op.S. **Theorem 4.10** Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $n\mathcal{J}$ Sp.

Then the underneath affirmations are analogous. (i) $(\Gamma M T)$ is a *nLs* q =

- (i) $(\Gamma, \mathcal{M}, \mathcal{J})$ is a $nIs_{\alpha}g$ Sub.Max. Sp.
- (ii) $n cl^*(\mathbb{H}) \mathbb{H}$ is $nIs_{\alpha}g Cl.S.$ for every $\mathbb{H} \subset \Gamma$.

Proof: $(i) \Rightarrow (ii)$: Let $(\Gamma, \mathcal{M}, \mathcal{J})$ be a $nIs_{\alpha}g$ – Sub.Max. Sp. and $\mathbb{H} \subset \Gamma$. Consider $\Gamma - ((n - cl^*(\mathbb{H})) - \mathbb{H}) =$ $(\Gamma - (n - cl^*(\mathbb{H}))) \cup \mathbb{H}$. Then n $cl^*(\Gamma - (n - cl^*(\mathbb{H}) - \mathbb{H})) = n$ $cl^*((\Gamma - n - cl^*(\mathbb{H})) \cup \mathbb{H}) \subset (\Gamma (n - cl^*(\mathbb{H}))) \cup n - cl^*(\mathbb{H}) = \Gamma$. Thus, $n - cl^*(\Gamma - (n - cl^*(\mathbb{H}) - \mathbb{H})) = \Gamma$. Hence, $\Gamma - ((n - cl^*(\mathbb{H})) - \mathbb{H})$ is $nIs_{\alpha}g$ – Op.S. which implies that n $cl^*(\mathbb{H}) - \mathbb{H}$ is $nIs_{\alpha}g - \text{Cl.S.}$ for every $\mathbb{H} \subset \Gamma$. $(ii) \Rightarrow (i)$: Suppose that (ii) holds. Let \mathbb{H} be $\mathcal{M}^* - \text{Dn.S.}$ in $(\Gamma, \mathcal{M}, \mathcal{J})$. Since (n $cl^*(\mathbb{H})) - \mathbb{H}$ is $nIs_{\alpha}g - \text{Cl.S.}$ for every

ON nIs_{α} g – SUBMAXIAMAL SPACES

 $\mathbb{H} \subset \Gamma, \Gamma - \mathbb{H} \text{ is } nIs_{\alpha}g - \text{Cl.S. which}$ implies that \mathbb{H} is a $nIs_{\alpha}g - \text{Op.S. for}$ every $\mathbb{H} \subset \Gamma$. Hence, $(\Gamma, \mathcal{M}, \mathcal{J})$ is a $nIs_{\alpha}g - \text{Sub.Max. Sp.}$

References

1. Acikgoz.A, Yuksel.S and Noiri.T (2005), $\alpha - I - preirresolute$ functions and $\beta - I - preirresolute$ functions, Bull.Malayas.Sci.Soc.(2)(28),(1),1-8.

2. Balachandran.K, Sundaram.P and Maki.H (1996), Generalised locally closed sets and GLC- continuous functions, Indian J. Pure and Applied Math., 27(3), 235-244.

3. Bahvani.K and Sivaraj.D(2015), I_g – Submaximal Spaces, Bol.Soc.Paran.Mat.,Vol.33 :105-110.

4. Lellis Thivagar.M and Carmel Richard (2013), On nano forms of weakly open sets, International journal of mathematics and statistics invention, 1(1):31–37.

5. Navaneethakrishnan. M and Sivaraj.D (2009), Generalised locally closed sets in ideal topological spaces, Bull.Allahabad Math.Soc, Vol.24,Part 1, 13-19. 6. Parimala.M, Jafari.S and Murali.S (2017), Nano ideal generalized closed sets in nano ideal topological spaces, In Annales Univ. Sci. Budapest, volume 60, pages 3–11.

7. Parimala.M, Jeevitha.R, and Selvakumar.A (2017), A new type of weakly closed set in ideal topological spaces, rn, 55:7.

8. Parimala.M, Jafari.S (2018), On some new notions in nano ideal topological spaces, Eurasian Bulletin of Mathematics, Vol.1, No.3,85-93.

9. Qays Hatem Imran (2018), On nano semi alpha open sets, arXiv preprint arXiv:1801.09143.

10. Pasunkilipandian.S, Baby Suganya.G (2022) and Kalaiselvi.M, On Some New Notions using $nIs_{\alpha}g$ – closed sets in Nano Ideal Topological Spaces, Kala Sarovar Journal, Vol.25 No.02, April – June.

11. Rajasekaran.I and Nethaji.O (2018), Simple forms of nano open sets in an ideal nano topological spaces, Journal of New Theory, 24(2018), 35-43.