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                               ABSTRACT 

 

Consider a finite group (𝐺,∗) . The Operation Order Divisor graph 𝛤𝑜𝑜𝑑(𝐺) of 𝐺 is 

a graph with 𝑉(𝛤𝑜𝑜𝑑(𝐺)) = 𝐺 and two different vertices 𝑎 and 𝑏 have an edge in 𝛤𝑜𝑜𝑑(𝐺) 

if and only if either 𝑂(𝑎)|𝑂(𝑎 ∗ 𝑏) or 𝑂(𝑏)|𝑂(𝑎 ∗ 𝑏). Here we are going to compare the 

properties of 𝐺 and the properties of 𝛤𝑜𝑜𝑑(𝐺).  
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Introduction: 

  The algebraic graph theory 

becomes an exciting research topic in the last 

twenty years.Many researches are developed 

on getting a graph from a algebra structure 

and then find out the properties of the 

algebraic structure using the resulting graph. 

The terms and definitions in graph 

theory are referred from [5] and for that of 

algebra are referred from [6]. 

In 2009, Sattanathan and Kala[7] 

introduced order prime graph of a group. In 

this graph vertices are the group elements and 

any two vertices are adjacent if and only if 

their orders are relatively prime. The concept 

of an order divisor graph of a group is 

introduced in [8] and in [9] with a slight 

change. While [8] defined it on elements of a 

finite group,[9] defined it on subgroups of a 

finite group. For [8], the order divisor graph, 

denoted as 𝑂𝐷(𝐺) , whose vertex set is 𝐺 

such that two distinct vertices 𝑥  and 𝑦 

having different orders are adjacent provided 

that 𝑂(𝑥)|𝑂(𝑦) or 𝑂(𝑦)|𝑂(𝑥). 

Motivated by the these concepts, we 

define and introduce the concept of operation 

order divisor graphs. 

 

Operation order divisor graph 

        Here we discuss about some 

preliminary properties of operation order 

divisor graphs. 

 

Proposition 2.1  Consider a finite group 

(𝐺,∗) with order n and identity 𝑒. Then the 

degree of 𝑒 in 𝛤𝑜𝑜𝑑(𝐺) is n-1.  
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Proof. Consider any element 𝑎 ∈
𝐺.Then obviously 𝑂(𝑒)|𝑂(𝑎 ∗ 𝑒). Therefore 

𝑒  will have adjacency to each and every 

other n-1 elements in 𝐺.Therefore the degree 

of 𝑒 in Γ𝑜𝑜𝑑(𝐺) is n-1.  

 

Proposition 2.2  Consider a finite group 

(𝐺,∗)  and 𝑥 ∈ 𝐺  be not a self inverse 

element. Then 𝑥 and 𝑥−1 does not have an 

edge in 𝛤𝑜𝑜𝑑(𝐺).  

 

Proof. Let 𝑥 be a non self inverse element of 

the group . Clearly 𝑥 ∗ 𝑥−1 = 𝑒, the identity 

element of 𝐺 . Therefore 𝑂(𝑥), 𝑂(𝑥−1)does 

not divide 𝑂(𝑒) .Thus 𝑥 and 𝑥−1 does not 

have an edge in Γ𝑜𝑜𝑑(𝐺).  

 

Proposition 2.3  Consider a finite group 

(𝐺,∗) and an element 𝑥  such that 𝑂(𝑥) >
3 . Then 𝑥  and 𝑥−2  have an edge in 

𝛤𝑜𝑜𝑑(𝐺).  

 

Proof. Let 𝑥 ∈ 𝐺  be an element of order 

greater than 3. Clearly 𝑥 ∗ 𝑥−2 = 𝑥−1  and 

𝑂(𝑥) = 𝑂(𝑥−1) . Therefore 𝑂(𝑥)  divides 

𝑂(𝑥 ∗ 𝑥−2) .Thus 𝑥 and 𝑥−2 have an edge 

in Γ𝑜𝑜𝑑(𝐺).  

 

Theorem 2.4  For any finite group (𝐺,∗), 

𝛤𝑜𝑜𝑑(𝐺) is a complete graph if and only if all 

the elements except identity has self inverse.  

Proof. Consider a finite group (𝐺,∗) . 

Assume that Γ𝑜𝑜𝑑(𝐺) is a complete graph. 

Suppose there exists an element 𝑥 in 𝐺 such 

that 𝑥  does not have a self inverse. 

Proposition 2.2 states that 𝑥  and 𝑥−1  does 

not have an edge, which is a contradiction to 

our assumption that 𝐺  is complete. Hence 

every element other than identity has self 

inverse in 𝐺. Conversely, assume that every 

element other than identity has a self inverse. 

Therefore 𝑥 ∗ 𝑦 ≠ 𝑒  for all 𝑥 ≠ 𝑦 ∈ 𝐺  and 

also 𝑂(𝑥) = 2 for all 𝑥 ∈ 𝐺 − 𝑒 . 𝑥  and 𝑦 

have an edge in Γ𝑜𝑜𝑑(𝐺).Thus Γ𝑜𝑜𝑑(𝐺) is a 

complete graph.  

 

Theorem 2.5 For any finite group (𝐺,∗) , 

𝛤𝑜𝑜𝑑(𝐺) is a star graph if and only if 𝐺 is 

isomorphic to one of the groups ℤ2 or ℤ3.  

 

Proof. Clearly Γ𝑜𝑜𝑑(ℤ2) = 𝐾2  and 

Γ𝑜𝑜𝑑(ℤ3) = 𝐾1,2  and hence Γ𝑜𝑜𝑑(𝐺)  is a 

star graph, when 𝐺  is either ℤ2  or ℤ3 . 

Conversely, Let us assume that Γ𝑜𝑜𝑑(𝐺) is a 

star graph. By proposition2.3, 𝐺  has no 

element of order greater than 3. Then every 

element other than identity has order either 2 

or 3. Suppose 𝐺 has two elements 𝑥 and 𝑦 

of orders 2 and 3 respectively. Clearly 𝑂(𝑥 ∗
𝑦) is either 2 or 3. Therefore 𝑥 and 𝑦 have 

adjacency, which contradicts our assumption. 

Now we have two possible cases. 

Case(i): Every element other than identity 

has order 2 

By Theorem 2.4, Γ𝑜𝑜𝑑(𝐺)  is a 

complete graph. We know that both complete 

and star graph is 𝐾2  and hence 𝐺  must be 

ℤ2.  

Case(ii): Every element other than identity 

has order 3 

In this case two non identity elements 

𝑥 and 𝑦 are adjacent if 𝑦 ≠ 𝑥−1. Therefore 

Γ𝑜𝑜𝑑(𝐺) is a star graph if 𝐺 must be ℤ3.  

Thus we can conclude that 𝐺  is 

either ℤ2 or ℤ3.  

 Since the identity element is an 

element having full degree, Star graph is the 

only tree, from the above theorem we have 

the following corollary.  

Corollary 2.6 For any finite group (𝐺,∗), 

𝛤𝑜𝑜𝑑(𝐺) is a tree if and only if 𝐺 is 

isomorphic to one of the groups ℤ2 or ℤ3.  

 

Theorem 2.7  Let 𝐺 ≅ ℤ𝑝 × ℤ𝑝 × ℤ𝑝 ×

… × ℤ𝑝 , where 𝑝  is an odd prime number 

and 𝑂(𝐺) = 𝑝𝑛. Then 𝛤𝑜𝑜𝑑(𝐺) ≅ 𝐾1,2,2,…,2.  
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Proof. Let 𝐺 ≅ ℤ𝑝 × ℤ𝑝 × ℤ𝑝 × … × ℤ𝑝 , 

where 𝑝  is an odd prime number and 

𝑂(𝐺) = 𝑝𝑛. Consider the identity element as 

a single partition. Note that every non 

identity element has order 𝑝.Since 𝑝 is odd , 

𝐺 has no self inverse element. Therefore two 

non identity elements 𝑥 and 𝑦 have an edge 

in Γ𝑜𝑜𝑑(𝐺), if 𝑦 ≠ 𝑥−1. Therefore we divide 

the remaining non identity elements into 

partitions such that each partition has 2 

elements 𝑥  and 𝑥−1 . Hence Γ𝑜𝑜𝑑(𝐺) ≅
𝐾1,2,2,…,2 

 

Theorem 2.8 𝛤𝑜𝑜𝑑(𝐺) can not be a cycle 

for any finite group (𝐺,∗).  

 

Proof. By Proposition 2.1, the identity 

element is adjacent to all the other elements 

in Γ𝑜𝑜𝑑(𝐺) . Therefore 𝑂(𝐺) = 3  when 

Γ𝑜𝑜𝑑(𝐺) is cycle. But note that every group 

of order 3 must be isomorphic to ℤ3. 𝑜(𝐺) ≅
𝐾1,2. Hence Γ𝑜𝑜𝑑(𝐺) can not be cycle.  

 

Theorem 2.9 Consider (𝐺,∗) as a group 

having 𝑝2 elements, where 𝑝 is an odd 

prime. Then the number of edges of 

𝛤𝑜𝑜𝑑(𝐺) = {

(𝑝−1)(𝑝3−1)

2
𝑖𝑓𝐺𝑖𝑠𝑐𝑦𝑐𝑙𝑖𝑐

(𝑝2−1)2

2
𝑖𝑓𝐺𝑖𝑠𝑛𝑜𝑛𝑐𝑦𝑐𝑙𝑖𝑐

 

 

Proof. Consider (𝐺,∗) as a group of order 

𝑝2, where 𝑝 is an odd prime. Since a group 

of order 𝑝2 , where 𝑝  is prime must be 

abelian, 𝐺 is an abelian group. Therefore we 

have the following cases. 

 

 

Case 1:𝑮 is cyclic 

Let 𝐺 be cyclic. 𝐺 ≅ ℤ𝑝2 . Then we 

can divide 𝐺  into three sets 𝐴, 𝐵, 𝐶  such 

that 𝐴 is a set of all elements having order 1, 

𝐵 is a set of all elements having order 𝑝 and 

𝐶 is a set of all elements having order 𝑝2. 

Since 𝐺  is cyclic, |𝐴| = 1, |𝐵| = 𝜙(𝑝) =
𝑝 − 1, |𝐶| = 𝜙(𝑝2) = 𝑝(𝑝 − 1) . By 

proposition 2.1, 𝑑𝑒𝑔(𝑒) = 𝑝2 − 1 .Let 𝑥 ∈
𝐵 . 𝑥  is adjacent to all the elements of 𝐵 

except it inverse. If 𝑦 ∈ 𝐶 , then either 𝑥 ∗
𝑦 ∈ 𝐵  or 𝑥 ∗ 𝑦 ∈ 𝐶 . Since 𝐺  has unique 

subgroup of order 𝑝 , 𝑥 ∗ 𝑦 ∉ 𝐵 . Therefore 

𝑥 ∗ 𝑦 ∈ 𝐶  and so 𝑥  and 𝑦  are adjacent. 

Therefore 𝑑𝑒𝑔(𝑥) = 1 + (𝑝 − 3) +
    𝑝(𝑝 − 1) = 𝑝2 − 2or all 𝑥 ∈ 𝐵 . Let 𝑥 ∈
𝐶. Clearly 𝑥 is adjacent to all the elements of 

sets A and B. Let 𝑦 ∈ 𝐵 . Note that 

𝑥−1, 𝑥−1 ∗ 𝑦 ∈ 𝐶 ,But 𝑥 ∗ 𝑥−1 ∗ 𝑦 ∈ 𝐵 . 

Therefore 𝑥  is not adjacent to 𝑥−1  and 

𝑥−1 ∗ 𝑦 for all 𝑦 ∈ 𝐵. Therefore 𝑑𝑒𝑔(𝑥) =
𝑝2 − 1 − 𝑝 = 𝑝2 − 𝑝 − 1 or all 𝑥 ∈ 𝐶 . 

Therefore the sum of the degrees of all 

elements of 𝐺 is 

(𝑝2 − 1) + (𝑝 − 1)(𝑝2 − 2) + (𝑝2 −
𝑝)(𝑝2 − 𝑝 − 1) = (𝑝 − 1)(𝑝3 − 1) . Hence 

the number of edges of Γ𝑜𝑜𝑑(𝐺) =
(𝑝−1)(𝑝3−1)

2
. 

Case 2: 𝑮 is non cyclic 

Since 𝐺 is non cyclic abelian group, 

𝐺 ≅ ℤ𝑝 × ℤ𝑝 . Therefore by Theorem 2.7, 

𝑜(𝐺) ≅ 𝐾1,2,2,…,2 . Therefore the number of 

edges of Γ𝑜𝑜𝑑(𝐺) =
(𝑝2−1)2

2
.  

 

Theorem 2.10 Consider (𝐺,∗) as a cyclic 

group of order 2𝑝, where 𝑝 is an odd prime 

number. Then 𝛤𝑜𝑜𝑑(𝐺) has 
3𝑝2−4𝑝+3

2
 edges. 

  

Proof. Consider (𝐺,∗) as a cyclic group of 

order 2𝑝. Then we can divide 𝐺  into four 

sets 𝐴, 𝐵, 𝐶, 𝐷  such that 𝐴  is a set of all 

elements having order 1, 𝐵  is a set of all 

elements having order 2, 𝐶  is a set of all 

elements having order 𝑝, 𝐷  is a set of all 

elements having order 2𝑝. Since 𝐺 is cyclic, 
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|𝐴| = 1, |𝐵| = 𝜙(2) = 1, |𝐶| = 𝜙(𝑝) = 𝑝 −
1  and |𝐷| = 𝑝 − 1 . By proposition 2.1, 

𝑑𝑒𝑔(𝑒) = 2𝑝 − 1. 

 

Case(i): Consider an element 𝑥 ∈ 𝐵. 

𝑥  is adjacent to 𝑒 . If 𝑦 ∈ 𝐶 , then 

𝑂(𝑥 ∗ 𝑦) = 2𝑝. Therefore 𝑥 ∗ 𝑦 ∈ 𝐷 and so 

each 𝑥 ∈ 𝐵  is adjacent to all 𝑦 ∈ 𝐶 . For 

every elements 𝑦 ∈ 𝐶, 𝑥 ∗ 𝑦 must be in 𝐷. 

Therefore 𝑥 ∗ 𝑥 ∗ 𝑦 = 𝑦 ∈ 𝐶  and so 𝑥  is 

not adjacent to any elements in 𝐷 . Hence 

𝑑𝑒𝑔(𝑥) = 1 + (𝑝 − 1) = 𝑝, for all 𝑥 ∈ 𝐵. 

Case(ii): Let 𝑥 ∈ 𝐶. 
Clearly 𝑥  is adjacent to all the 

elements of sets A and B. In 𝐶 , 𝑥  is 
adjacent to all elements in 𝐶  expect its 
inverse. Let 𝑥 ∈ 𝐶. For every elements 𝑦 ∈
𝐵, 𝑥 ∗ 𝑦 must be in 𝐷. Therefore 𝑥 ∗ 𝑥 ∗
𝑦 = 𝑦 ∈ 𝐵 and so 𝑥 is not adjacent to 𝑥 ∗
𝑦  in 𝐷  but 𝑥  is adjacent to remaining 
elements of 𝐷 . Hence 𝑑𝑒𝑔(𝑥) = 1 + 1 +
(𝑝 − 3) + (𝑝 − 2) = 2𝑝 − 3, for all 𝑥 ∈ 𝐶. 
Case(iii): Let 𝑥 ∈ 𝐷. 

Clearly 𝑥  is adjacent to all the 
elements of sets A and 𝐶 − {𝑥−1 ∗ 𝑦} , 
where 𝑦 ∈ 𝐵. Note that if 𝑥 ∈ 𝐵 and 𝑦 ∈
𝐷 then 𝑥 ∗ 𝑦 ∈ 𝐶. Therefore no element in 
𝐷 is adjacent to element in 𝐵. Consider two 
elements 𝑥, 𝑦  in 𝐷 . clearly 𝑥 = 𝑎 ∗ 𝑏1 
and 𝑦 = 𝑎 ∗ 𝑏2  , where 𝑎 ∈ 𝐵, 𝑏1, 𝑏2 ∈ 𝐶 . 
𝑥 ∗ 𝑦 = 𝑏1 ∗ 𝑏2 ∈ 𝐶  or 𝐵 . Therefore 𝑥 
and 𝑦  does not have an edge. Hence 
𝑑𝑒𝑔(𝑥) = 1 + (𝑝 − 2) = 𝑝 − 1, for all 𝑥 ∈
𝐷. Therefore the sum of the degrees of all 
elements of 𝐺  is       (2𝑝 − 1) + 𝑝 +
(𝑝 − 1)(2𝑝 − 3) +       (𝑝 − 1)(𝑝 − 1) =
3𝑝2 − 4𝑝 + 3 . Hence 𝛤𝑜𝑜𝑑(𝐺)  has 
3𝑝2−4𝑝+3

2
 edges.  

 

Theorem 2.11 Consider (𝐺,∗) as a cyclic 
group of order 𝑝𝑞, where 𝑝, 𝑞 are distinct 

odd prime .Then 𝛤𝑜𝑜𝑑(𝐺) has  
(𝑝2−𝑝−1)(𝑞2−𝑞−1)−𝑝𝑞

2
 edges  

Proof.Consider (𝐺,∗)  as a cyclic group of 
order 𝑝𝑞 , where 𝑝, 𝑞  are distinct odd 
primes. Then 𝐺  can be divided into four 
sets 𝐴, 𝐵, 𝐶, 𝐷  such that 𝐴  is a set of all 
elements having order 1, 𝐵  is a set of all 
elements having order 𝑝, 𝐶 is a set of all 
elements having order 𝑞, 𝐷 is a set of all 
elements having order 𝑝𝑞 . Since 𝐺  is 
cyclic, |𝐴| = 1, |𝐵| = 𝜙(𝑝) = 𝑝 − 1, |𝐶| =
𝜙(𝑞) = 𝑞 − 1  and |𝐷| = 𝑝𝑞 − 𝑝 − 𝑞 + 1 . 
By proposition 2.1, 𝑑𝑒𝑔(𝑒) = 𝑝𝑞 − 1. 
Case(i): Let 𝑥 ∈ 𝐵. 

𝑥 is adjacent to 𝑒 and all elements 
of 𝐵 other than its inverse. If 𝑦 ∈ 𝐶, then 
𝑂(𝑥 ∗ 𝑦) = 𝑝𝑞 . Therefore 𝑥 ∗ 𝑦 ∈ 𝐷  and 
so 𝑥  is adjacent to all 𝑦 ∈ 𝐶 . For every 
elements 𝑦 ∈ 𝐶 , 𝑥−1 ∗ 𝑦  must be in 𝐷 . 
Therefore 𝑥 ∗ 𝑥−1 ∗ 𝑦 = 𝑦 ∈ 𝐶  and so 𝑥 
is not adjacent to the elements in 𝐷 is of 
the form 𝑥−1 ∗ 𝑦 , where 𝑥 ∈ 𝐵  and 𝑦 ∈
𝐶 . Hence 𝑑𝑒𝑔(𝑥) = 1 + (𝑝 − 3) + (𝑞 −
1) + (𝑝𝑞 − 𝑝 − 2𝑞 + 2) = 𝑝𝑞 − 𝑞 − 1 , for 
all 𝑥 ∈ 𝐵. 
Case(ii): Let 𝑥 ∈ 𝐶. 

we use the argument of case(i), we 
get 𝑑𝑒𝑔(𝑥) = 1 + (𝑝 − 1) + (𝑞 − 3) +
(𝑝𝑞 − 2𝑝 − 𝑞 + 2) = 𝑝𝑞 − 𝑝 − 1 , for all 
𝑥 ∈ 𝐶. 
Case(iii:) Let 𝑥 ∈ 𝐷. 

Clearly 𝑥  is adjacent to all the 
elements of sets A. Note that every element 
in 𝐷 is of the form product of one element 
in 𝐵 and one element in 𝐶. Therefore 𝑥 =
𝑎 ∗ 𝑏, where 𝑎 ∈ 𝐵  and 𝑏 ∈ 𝐶 . Clearly 𝑥 
is not adjacent to 𝑎−1 ∈ 𝐵 and adjacent to 
remaining elements in𝐵. Similarly 𝑥 is not 
adjacent to 𝑏−1 ∈ 𝐶  and adjacent to 
remaining elements is 𝐶 . In 𝐷 , 𝑥  is not 
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adjacent to the elements of the form 𝑎−1 ∗
𝑏, for all 𝑏 ∈ 𝐶 and 𝑎 ∗ 𝑏−1, for all 𝑎 ∈ 𝐵 
and 𝑥  is adjacent to the remaining 
elements of 𝐷. Hence 𝑑𝑒𝑔(𝑥) = 1 + (𝑝 −
2) + (𝑞 − 2) + (𝑝𝑞 − 2𝑝 − 2𝑞 + 3) =
𝑝𝑞 − 𝑝 − 𝑞 , for all 𝑥 ∈ 𝐷 . Therefore the 
sum of the degrees of all elements of 𝐺 is 
(𝑝𝑞 − 1) + (𝑝 − 1)(𝑝𝑞 − 𝑞 − 1) + (𝑞 −
1)(𝑝𝑞 − 𝑝 − 1) + (𝑝𝑞 − 𝑝 − 𝑞 + 1)(𝑝𝑞 −
𝑝 − 𝑞) = (𝑝2 − 𝑝 − 1)(𝑞2 − 𝑞 − 1) − 𝑝𝑞 . 

Hence 𝛤𝑜𝑜𝑑(𝐺) has 
(𝑝2−𝑝−1)(𝑞2−𝑞−1)−𝑝𝑞

2
 

edges. 
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