

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

BAMA SRINIVASAN

Department of Information

Science and Technology

MALA NEHRU

Department of Information

Science and Technology

RANJANI PARTHASARATHI

Department of Information

Science and Technology

SASWATHI MUKHERJEE

Department of Information Science and

Technology

JEENA A THANKACHAN

Department of Information Science and

Technology

AUTOMATED COMPUTER PROGRAM EVALUATION

AND PROJECTS – OUR EXPERIENCES

ABSTRACT

 This paper provides a few approaches to automating computer programming and project

submission tasks, that we have been following for the last six years and have found to be

successful. The approaches include using CodeRunner with Learning Management System (LMS)

integration for programming practice and evaluation, and Git (GitHub) for project submissions

and automatic code evaluation. In this paper, we describe the details of how we set up the tools and

customized those for computer science courses. Based on our experiences, we also provide a few

insights on using these tools for effective learning.

Keywords: Computer programming, autograding, online assessment.

I. Introduction

 Consider a typical institution conducting a programming course (lab) for students. Here, the

student is expected to have a lab notebook and prepare the assigned programming assignment each

week in a well formatted structure. This structure includes an algorithm, related programming

segments known as code, and the output after successful completion. Once the course instructor

verifies the logic of the code, the student types it to practice programming in the lab. In the first

instance, the required output may not be arrived at and the student has to patiently debug the logical

UGC CARE

APPROVED

231

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

and syntactical errors, which takes time. Some students readily give up and take the easiest route of

writing down only the output or copying from others. Course instructors now have these tasks at

hand: (i) setting up the required programming environment in labs; (ii) verifying the logic of the code

that has been written by students in notebooks; (iii) helping students to debug the errors; and (iv)

evaluating students’ work by checking the execution manually. Assuming a class size of 60, it is

close to impossible for the course instructor to do all these tasks in the given time.

 We have addressed these shortcomings by incorporating autograding program environments,

namely CodeRunner (CR) and GitHub Classroom (GHC). Both environments provide a single

interface for multiple programming languages, such as C, C++, Java, and Python. Hence, a separate

setup environment is not required for each of these programming labs. With CR or GHC, course

instructors distribute programming assignments to students with appropriate instructions, all in

virtual mode. Then students work independently based on the instructions, and the code is verified

automatically. Here, there is no manual evaluation, so the course instructor does not need to go to

individual students’ places and check the output of his code. The detailed work of attempts, debug

methods, and marks is available to both the course instructor and the student instantly. This way, the

course instructor can spend time helping students understand the programming part and debug the

code if necessary.

 Students are also expected to do a team project in their course of study, where they write

code in a phased manner and develop software. To encourage the collaborative environment, we use

GHC for the submission of students’ code. This method provides the course instructors with

information about code submissions, frequency of these submissions with changes, and the

individual contribution, all in online mode. This reduces the manual time of checking the students’

progress in evaluating projects. An additional advantage is that the codes are available in a

repository that is accessible to the team, even at a later point in time.

 In this paper, we provide the details of our experiences on setting up and using CR and GHC

to automate the tasks of program evaluation and project submission. The paper is organized as

follows. Section II discusses a few methods that are currently available for auto grading. Section III

describes the details of the installation and customization of CR. Section IV provides an outline of

GHC assignment submissions and the automatic evaluation of programs. This section also includes

the details of project submissions through GHC. Section V gives a few insights from our

experiences, and Section VI summarizes the paper.

232

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

II. Review of Existing Methods

 Assessment and feedback are critical aspects of the learning and teaching process [3]. They

not only benefit students, but also help professors identify course flaws. In programming based

courses where practical skills are more important than memorization, regular practice and its

evaluation are significant. Since the 1960’s, various Auto Assessment tools for automatic program

evaluation in such courses have evolved to assess the code with execution (dynamic) and without

execution (static) [15]. TRY is a dynamic functionality assessment tool that was implemented in

1980’s [33]. Assyst, Ceilidh (also known as CourseMarker), HoGG, Online Judge, and BOSS

evaluate the program’s functionality by comparing its output or checking the return values [12],

[13], [23], [30]. WebToTeach and ELP tools evaluate single statements [1], [36]. Scheme-robo and

JEWL evaluate codes in Scheme and Java with graphical user interfaces, respectively [11], [12].

Automata, Dr. Scratch, EduPCR, an AA system for learning object-oriented programming, VPL,

Grading Java Assignments, GradeIT, and AA for OpenGL are some of the Automatic Assessment

systems that have been used in the past few years [2], [9], [20], [22], [31], [34], [39].

 Spanish National University of Distance Education (UNED) introduced Blocks, an open-

source IDE which is limited to a few programming languages like C, C++, and Fortran [6]. PASS is

a web-based automated Programming Assignment aSsessment System, introduced and used by the

Department of Computer Science, City University of Hong Kong in the year 2004; it is not open

source software [4]. Drop Project (DP) is an Auto Assessment tool used since 2018 at Lusofona

University with various functionalities like standard assignment format, individual and group

submissions, multiple submissions and tests, execution time and coding style [5]. DP is an open

source tool but is limited to testing programming languages like Java, Kotlin, Clojure, and Scala.

CodeZinger is a proprietary tool for the educators, with costs involved for each service, and the

educators need to depend on this firm for every need [8]. Function specific autograders like

Nbgrader and jupyter autograde are restricted with jupyter notebook only, limiting them mostly to

Python [24], [32].

 CodeRunner and Virtual Programming Lab are free, open-source plugins for the Moodle

learning platform [7]. CodeRunner, extended with OpenGL programs plugged into the Moodle

learning platform, was effectively used at the University of Auckland, New Zealand, for a Computer

Graphics course (200+ students).

 Git is the most prevalent version control system (VCS) nowadays [16]; in the 2021 Stack

Overflow survey, more than 93% of professional developers reported using Git. As a result, there

233

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

has been an increase in the use of Git in university courses. Among educators, the hosting service

GitHub (GH) and its programming education tool GitHub Classroom (GHC) are particularly

popular. Git workflow, autograding, offline automated processing, pull requests, admin rights to

students, GitHub organization, submission dates and times, linkage with LMS like Moodle or

Canvas constitute a few among many professional features [17], [18].

 From this study, it is evident that most of the tools are proprietary and therefore expensive,

which does not fit the educational requirements for serving a large number of students. Some of the

tools are program specific, which means they need separate resources and support for installation

and customization. However, tools such as CR, GH, and the Virtual Programming Lab are free for

the educational community. We have chosen CR owing to its easy customization and support. Since

GH is prevalent and working with it is beneficial for students from an industry standpoint, we have

incorporated GH in our courses and programming labs.

III. Automated Code Evaluation with CodeRunner

 CodeRunner is an automated method for evaluating programming exercises. It was first

developed and used by University of Canterbury [7] as a plugin for Moodle [25]. We installed this

tool in our department labs and used it to run programming courses and assessments. In this section,

we provide the details of installing, customizing, and using this tool for our courses.

A. Installation, Configuration and Customization

 Two servers with the following configuration were assigned for the purpose of implementing

Learning Management Systems: Intel Xeon E3-1200 v5, RAM of 32 GB, and Hard Disk of 16 TB.

Both servers run Linux, one with CentOS and the other with Ubuntu. Moodle was installed in the

former one and was used for all courses. Without disturbing this setup, we have installed the

CodeRunner tool on the other server through the sandbox that supports small programming tasks,

namely, Jobeserver [7]. The design of the setup is given in Figure 1. The steps of the installation of

Moodle initially were carried out with Apache, MySQL, and PHP [27]. For the CR, the Jobeserver

was installed first, along with Apache and the related programming packages such as Python 3, C,

C++, Java, and Octave [19]. Since it is a private server, the API authentication mechanism was not

installed. Once installed, this server was connected to the Moodle server through its IP address or

domain address. For our setup, we have configured the domain address as "auistjobe.edu."

234

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

.

Figure 1 Setup of Moodle and Code Runner

 By default, the address of the plugin is Canterbury web server, namely

‘jobe2.cosc.Canterbury.ac.nz’. This however is not a good option because: (i) the number of

students accessing CR from our department is more than 100 and (ii) the server has to be connected

to the internet if default settings are used. These two limitations are addressed by having our own

sandbox installed in a separate server as mentioned earlier.

 From Moodle administration, first the plugin of CR was installed [7]. Then in the

configuration option, the domain address of the machine with Jobeserver was given, which is shown

in Figure 2.

Figure 2 Customization through domain address

We have further customized the whole setup by having two domain addresses - one which

can be operated only within the labs without internet connection and the other, which can be

accessed anywhere in the department/ university with internet connectivity. This customization

helps the teachers to load questions in Moodle from their place and students can answer those

questions within the lab premises without internet connectivity as a closed book assessment.

235

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

B. Code Runner Usage

 CR supports multiple languages such as C, C++, Java, Python, PHP and Octave. Once the

plugin of CR is installed, the question bank options from Moodle has CR, through which

programming questions can be added as an adaptive mode.

 The teacher has the flexibility of providing the customized or debugging options with the

required test cases. Figure 3 shows these options for a sample question of finding the sum of first n

natural numbers for the programming language Python with a test case. Here, any number of test

cases can be added with this setup.

 With these questions in the question bank, the teacher can provide a quiz from the course

activity option in Moodle as an adaptive mode. Students can view the question and code within the

window and debug with the check option. Figures 4 and 5 show the attempts of students for correct

and wrong answers, respectively.

Figure 3 Code Runner - Adding Question

 We have conducted programming assessments for multiple languages to more than 450

students simultaneously using this setup. Students can debug the code and work until they get the

correct answer according to the test cases. Teachers also get the immediate feedback and marks of

each student.

 While CR is used within our University settings, we also explored GHC for online

programming tasks. This is described in the next section.

236

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

IV. Use of GitHub for Programming Courses and Projects

 Git is a free and open source distributed version control system used by software developers

for development of software [16]. GitHub (GH) is an internet hosting service for software

development based on Git [18]. It provides extensive support with free resources for teachers and

students through GitHub Classroom (GHC) [17]. In the next section, we describe the details of

setting up classrooms for our courses.

Figure 4 Correct answer Figure 5 Wrong answer

A. Creation of Classrooms through GHC

 To set up a classroom, first we created an organization namely ‘DIST-AnnaUniversity’

where the repositories of students and teachers could be accommodated, as shown in Figure 6.

,

Figure 6 Creation of Organization in GH

 An academic teacher enrolled through GH can create multiple organizations after due

verifications from GH. Then we added multiple classrooms, each for a different course linked with

the organization that was created earlier. A snapshot of sample classrooms – ‘Python Workshop,

Machine Learning Lab, Unix Internals and fyp 2022 2023’ from our department is shown in

Figure 7. Next, we enrolled students in the specific classroom. GHC provides two methods for

237

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

enrolment (i) through LMS such as Moodle (ii) through a manual procedure. Since we had Moodle

set up for the course, we connected it with GHC. More than one teacher could be added for a single

classroom, which can be done using the “TA and admins” menu.

 With this setup in place assignments can be added. We have experimented with two different

types of assignment- (i) Programming Courses and laboratories (ii) Project Submissions. These are

described in the next two sections.

Figure 7 Classrooms created through GHC

B. GHC for Programming Courses and Laboratories

The assignment section of GHC is customized for the programming courses in terms of

creation of template repository, assigning each student an individual repository and adding

relevant modules and test cases for autograding. These steps are explained below.

1) Creation of Template with starter code: As an initial step, a repository has to be created in an

organization as a template. As a running example, here we provide the description of how we

created a Python programming exercise with the autograding method for Machine Learning

Course. The exercise is to fit a straight line using Linear Regression between the two attributes of

the dataset of iris [21]. The actual question that we used is given below.

a) Find the average petal width in the program ‘average.py’. (5 points)

b) Find the range of petal width in the program ‘range.py’. (7 points)

c) In the program ‘regression.py’, fit a straight line between petal length and petal width.

Suppose the equation is y = ax+b, find the variables ‘a’ and ‘b’ first. Then for a new petal width

value of 5.3, find the predicted value of ‘y’. (13 points)

 For this specific question, we first created three empty program files namely, ‘average.py’,

‘range.py’ and ‘regression.py’ with the required Python modules. In each of the programs, hints in

238

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

the form of comments were given, which help the student to add the lines of code at the specific

places. For example, the question of regression.py appears as follows. Here, each student can use a

different logic to find the values of ‘a’ and ‘b’, using which the new predicted value with the

variable ‘new pl’ can be determined.

Question: #In this program, you will fit a straight line between petal length and petal width.

Suppose the equation is y = ax+b, find the variables ‘a’ and ‘b’ first. Then for a new petal width

value of 5.1, find the predicted value of y.

--

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn import metrics

#read csv file

#Take X as petal length

#Take y as petal width

#Split train and test with 30% and set random state as 0

#use regression from scikit learn

#find b and round off to 2 decimal places

#find a and round off to 2 decimal places

new_pw = 5.3 #new x value

#calculate y

new_pl = print(round(new_pl,2)) #round off to 2 decimal places

Similar comments were given for program files ‘average.py’ and ‘range.py’.

 Thus, the question set for this exercise consists of (i) the dataset ‘iris.csv’ (ii) three python

programming files with comments and (iii) readme.md consisting of questions.

 In the GHC organization ‘DIST-AnnaUniversity’ (Figure 6), a repository namely, ‘ml-

assessment1-2022’ for this exercise was created first. The above question set was then pushed/

uploaded and the repository was set as template, as shown in Figure 8. This template was then linked

to the assignment section of GHC, which is described next.

239

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

 Figure 8 Creation of a template repository

2) Adding Assignment in GHC: Within each classroom, a new assignment can be created with the

options of name, deadline, individual /group assignment, repository visibility with options of

private/ public, admin access methods, support of template and editors, addition of test cases and

pull request. For the above programming exercise, we have included the following details.

� Name as ‘Assessment I”

� Deadline of 90 minutes, which can be altered based on the needs

� Individual assignment, since each student has to work independently

� Private repository

� Provide admin access, so that students have full ownership

� Template link of ‘ml-assessment1-2022’, which was created as described in

Section IV-B1.

� GHC provides codespaces for education purposes, which help students to code within a

browser. Hence, we enabled the editor of Codespaces which supports vscode [37].

� Addition of test cases, which is a mandatory step for autograding programming exercises.

This is detailed in Section IV-B3

� Pull request, so that teachers can give immediate feedback

240

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

Table 1 Test case settings for three python programs

Test Name Average Range Regression

Setup
command

sudo -H pip3
install pandas

sudo -H pip3
install pandas

sudo -H pip3 in stall pandas;
sudo -H pip3 install scikit-
learn;
sudo -H pip3 install numpy

Run command python3 aver age.py python3 range.py python3 regression.py

Expected Out
put

1.2 2.4 1.85

Comparison included included included

Timeout 10 10 10

Points 5 7 13

3) Addition of test cases: GHC provides autograding facility through the addition of GH actions.

In the assignment options, we can add test case as ‘input/output’, ‘run command’ or add specific

unit tests for languages python, Java, Node, C and C++, as shown in Figure 9.

Figure 9 Adding tests for autograding

 For the above example, we used ‘input/output’ option with the settings shown in Table I.

The different settings are described below.

� The name of the test, which can be identified distinctly for the three different programs.

� Setup commands are essential, where python libraries are to be included for the execution

of programs. The program ‘regression.py’ (listed above) specifies the libraries of pandas,

sklearn and numpy, which needs to be installed before execution of the program. Hence,

the setup command should include all the necessary packages required for the program

execution.

� Run command is for execution of python programs. Since all the three python programs

are of version 3, ‘python3 <filename>’ is used.

241

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

� Expected output of each program is to be given. In the running example, the output values

are 1.2, 2.4 and 1.85 for average.py, range.py and regression.py, respectively.

� The comparison has three options (i) included (ii) exact and (iii) regex. Here, we have

given ‘included’ because this particular test case will check for the value which is included

in the print statement.

� Default timeout of 10 minutes is given

� Marks (points) for the specific question as 5, 7 and 13 are given for ‘average.py’,

‘range.py’ and ‘regression.py’, respectively.

 Alternatively, ‘Run Python’ option (Figure 9) can also be used, through which ‘pytest’ is

incorporated by GHC. In such cases, the settings and the question type varies. We have also

experimented with this type and have found it be useful.

Figure 10 Consolidated student view of assignments

 With these settings, the assignment can be created and the link can be distributed to students.

Once the student takes up the assignment, the instructor can immediately view the status of students

in terms of the number of students who have accepted, submitted and passed with their scores and a

link to their repository, as shown in Figure 10. It can be seen that one gets points, only if the test case

succeeds in each of the questions. The instructor can view each student’s repository to verify the

programming structure for the correctness. If the feedback is to be given, it can be done through pull

request.

 All the above details are described only from the teacher’s viewpoint. From the students’

perspective, once he/ she accepts the assignment, a unique repository is created by GHC in the same

organization with the template where questions are loaded. The student can then download those to

their machine, work on it and after ensuring the correctness can upload/ push to their repository. GHC

automatically executes the code in the background and checks with the available test cases. This is

242

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

visible to the student and can be used to debug the code if it fails, as shown in Figure 11. If all the test

cases pass, the repository has a green tick mark indicating that the student has successfully completed

the exercise, as shown in Figure 12.

Figure 11 Codeexecution at the background

Figure 12 Successful completion

 Apart from programming assessments, we also conduct online and hybrid programming

workshops through GHC. Recently, we conducted a Python workshop for beginners spanning six

continuous days with two hours’ online sessions each day for five days and a single day in offline

mode. At the beginning of the workshop, participants were neither aware of coding nor comfortable

with GH practices, but were able to code and submit programming exercise in GHC within 3 days.

Through this method, not only participants get benefited with the coding part, the instructor also can

clear the doubts by going through their work and providing the feedback instantly and correcting the

codes. The response from participants for this course is given in Figure 13, where 1 means least-

effective and 5 means most-effective.

243

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

Figure 13 Response of participants from Python Workshop

C. GHC for Project submission

 Projects that involve code submissions are encouraged to be submitted through GHC. We

have used GHC for project courses such as Final Year Project (FYP), Creative Innovative Project,

Socially Relevant Project and Programming with Open Source. For these courses, we use a similar

set up of GHC and assignment that was described above, but in a collaborative mode as a group

assignment listing the number of members for each team. A sample course with 27 teams is shown in

Figure 14. Students, project guide and staff in-charge of project/ course are added as collaborators.

While students can work on the code and push these to this repository in a collaborative environment,

the staff can verify and provide feedback instantaneously. The project staff in charge can use the

number of commits, contributors and frequency of code submission information to evaluate the

project. A sample repository of a FYP is shown in Figure 15, indicating the number of commits and

the information of codes.

Figure 14 Submission of team projects

244

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

Figure 15 Sample FYP team repository in GHC

 Thus with GHC, we have automated programming exercises and project submission tasks for

the last six years. In the next section, we provide a few insights based on our experiences.

V. Lessons Learnt

 Although there are challenges in adapting to the virtual environment, it turns out to be

beneficial in the long run. Here, we project some pointers which may help other educational

institutions to move towards autograding mechanisms.

� CR is free and open source with zero pricing, which makes it ideal for educational settings.

� GHC is maintained presently by Microsoft and it provides limitless private repositories with

other resources for the academic community. These are beneficial because it provides an

industry ready environment for practicing computer programming through GH with

contribution to open source projects.

� Initially, students have a learning curve to get used to CR and GHC, but after two to three

attempts students find it easier and useful.

� For closed book assessment, CR in an intranet setup without internet connection fare better.

� For regular programming exercise and open book assessments, GHC works well owing to the

method of question wise test cases, automated grading, and instantaneous feedback from

course instructor to students.

� Both CR and GHC supports multiple programming languages and can be used to conduct

programming assessment, labs in parallel.

� GHC is suited for both in person labs as well as online sessions.

245

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

� Students find this method of programming useful, which enables them to participate in

programming contests and industry oriented internship and jobs.

� Training of faculty is essential for both CR and GHC usage in programming courses.

� With GHC, there is always the possibility of copying among students. To eliminate this

practice, free plagiarism detection tools such as MOSS [29] can be used. Another approach

which we adopted was having random questions distributed to students through Moodle quiz,

which significantly reduces the chances of copying.

VI. Conclusion

 In this paper, we have described a few automation mechanisms for our programming labs and

project submissions. The mechanisms include CR and GHC. We have customized CR based on our

course requirements and the major advantage is that a closed book programming assessment could be

automated with this setup. We have used GHC for both learning as well as assessments in

programming courses through online mode. This automation has multiple advantages from the

perspective of students and course instructors. From the student point of view, they can understand

the programming constructs better, practice at their own pace and get a real time experience of

contribution to the open source community, especially when they use GHC. Instructors save time by

eliminating manual evaluation and at the same time help students in learning.

References

1. Arnow, David, and Oleg Barshay. “WebToTeach: an interactive focused programming

exercise system.” FIE’99 Frontiers in Education. 29th Annual Frontiers in Education

Conference. Designing the Future of Science and Engineering Education. Conference

Proceedings (IEEE Cat. No. 99CH37011. Vol. 1. IEEE, 1999.

2. B. C. W¨unsche, Z. Chen, L. Shaw, T. Suselo, K.-C. Leung, D. Dimalen, W. van der Mark, A.

Luxton-Reilly, and R. Lobb, “Automatic assessment of OpenGL computer graphics

assignments,” in Proc. 23rd Annu. ACM Conf. Innov. Technol. Comput. Sci. Educ., 2018, pp.

81–86.

3. Benford, S. D., et al. ‘Ceilidh: A courseware system for the assessment and administration of

computer programming courses in higher education.” Proceedings of the Interdisciplinary

Workshop on Complex Learning in Computer Environments. 1994.

246

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

4. Choy, Marian, et al. “Experiences in using an automated system for improving students’

learning of computer programming.” International Conference on Web-Based Learning.

Springer, Berlin, Heidelberg, 2005.

5. Cipriano, Bruno Pereira, Nuno Fachada, and Pedro Alves. “Drop Project: An automatic

assessment tool for programming assignments.” SoftwareX 18 (2022): 101079.

6. Code Blocks: Open Source, Cross Platform, Free C, C++ and Fortran IDE. Accessed: Jul.

25, 2019. [Online]. Available: http://www. codeblocks. org/

7. Coderunner, https://moodle.org/plugins/qtype coderunner

8. Code Zinger, https://codezinger.com/pricing/

9. D. Thi´ebaut, “Automatic evaluation of computer programs using Moodle’s virtual

programming lab (VPL) plug-in,” J. Comput. Sci. Colleges, vol. 30, no. 6, pp.

145–151, 2015.

10. Darwin, Ian F. Checking C Programs with lint. “ O’Reilly Media, Inc.”, 1988.

11. English, John. “Automated assessment of GUI programs using JEWL.” ACM SIGCSE

Bulletin 36.3 (2004): 137-141.

12. Foxley, Eric, et al. “The Ceilidh System An Overview and some experiences of use.” Asian

Technology Conference in Mathematics, ATCM97, Penang, Malaysia. 1997.

13. Foxley, Eric, et al. “The coursemaster automated assessment system-a next generation

ceilidh.” Computer assisted assessment workshop. 2001.

14. G. Singh, S. Srikant, and V. Aggarwal, “Question independent grading using machine

learning: The case of computer program grading,” in Proc. 22nd ACM SIGKDD Int. Conf.

Knowl. Discovery Data Mining, 2016, pp. 263–272.

15. Galan, Daniel, et al. “Automated assessment of computer programming practices: The 8-

years UNED experience.” IEEE Access 7 (2019): 130113-130119.

16. Git, https://git-scm.com/

17. GitHub Classroom, https://classroom.github.com/

18. Github, https://github.com/

19. Github, https://github.com/trampgeek/jobe

20. H. Kitaya and U. Inoue, “An online automated scoring system for java programming

assignments,” Int. J. Inf. Educ. Technol., vol. 6, no. 4, p. 275, 2016.

21. Iris dataset, https://archive.ics.uci.edu/ml/datasets/iris

247

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

22. J. Moreno-Le´on, G. Robles, and M. Rom´an-Gonz´alez, “Dr. scratch: Automatic analysis of

scratch projects to assess and foster computational thinking,” Rev. Educ. Distancia, vol. 15,

no. 46, pp. 1 23, 2015.

23. Jackson, David, and Michelle Usher. “Grading student programs using ASSYST.”

Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science

education. 1997.

24. Jupyter autograde, https://pypi.org/project/jupyter-autograde/

25. Lobb, R. & Harlow, J. Coderunner: a tool for assessing computer programming skills.

Inroads, 7, 2016,47-51.

26. Luck, M., and M. Joy. “Computer-based submission and assessment in BOSS.” Interactions

Online Journal 6 (1999).

27. Moodle, https://docs.moodle.org/401/en/Installing Moodle

28. Moodle, https://moodle.org/

29. MOSS plagiarism checker, https://theory.stanford.edu/~aiken/moss/

30. Morris, Derek S. “Automatic grading of student’s programming assignments: an interactive

process and suite of programs.” 33rd Annual Frontiers in Education, 2003. FIE 2003.. Vol.

3. IEEE, 2003. Cheang, Brenda, et al. ”On automated grading of programming assignments

in an academic institution.” Computers & Education 41.2 (2003): 121-131.

31. N. A. Rashid, L. W. Lim, O. S. Eng, T. H. Ping, Z. Zainol, and O. Majid, “A framework of an

automatic assessment system for learning programming,” in Advanced Computer and

Communication Engineering Technology. New York, NY, USA: Springer, 2016,

pp.967–977.

32. NB grader, https://nbgrader.readthedocs.io/en/stable/

33. Reek, Kenneth A. “The TRY system-or-how to avoid testing student programs.” Proceedings

of the twentieth SIGCSE technical symposium on Computer science education. 1989.

34. S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and A. Bhattacharya,

“Automatic grading and feedback using program repair for introductory programming

courses,” in Proc. ACM Conf. Innov. Technol. Comput. Sci. Educ., 2017, pp. 92–97.

35. Saikkonen, Riku, Lauri Malmi, and Ari Korhonen. “Fully automatic assessment of

programming exercises.” Proceedings of the 6th annual conference on Innovation and

technology in computer science education. 2001.

248

R e s e a r c h a n d R e f l e c t i o n s o n E d u c a t i o n
I S S N 0 9 7 4 – 6 4 8 X (P) V o l . 2 1 , N o . 1 A , M a r c h 2 0 2 3

36. Truong, Nghi, Peter Bancroft, and Paul Roe. “A web based environment for learning to

program.” Proceedings of the 26th Australasian computer science conference-Volume

16. 2003.

37. Visual Studio Code, https://code.visualstudio.com/

38. Von Hagen, William. The definitive guide to GCC. Apress, 2011.

39. Y. Wang, H. Li, Y. Feng, Y. Jiang, and Y. Liu, “Assessment of programming language

learning based on peer code review model: Implementation and experience report,” Comput.

Educ., vol. 59, no. 2, pp. 412–422, 2012.

249

	first
	Front Inner Cover
	Center
	Back Inner Cover
	Last

